98%
921
2 minutes
20
Glioblastoma harbors a dynamic subpopulation of glioblastoma stem-like cells (GSCs) that can propagate tumors in vivo and is resistant to standard chemoradiation. Identification of the cell-intrinsic mechanisms governing this clinically important cell state may lead to the discovery of therapeutic strategies for this challenging malignancy. Here, we demonstrate that the mitotic E3 ubiquitin ligase CDC20-anaphase-promoting complex (CDC20-APC) drives invasiveness and self-renewal in patient tumor-derived GSCs. Moreover, CDC20 knockdown inhibited and CDC20 overexpression increased the ability of human GSCs to generate brain tumors in an orthotopic xenograft model in vivo. CDC20-APC control of GSC invasion and self-renewal operates through pluripotency-related transcription factor SOX2. Our results identify a CDC20-APC/SOX2 signaling axis that controls key biological properties of GSCs, with implications for CDC20-APC-targeted strategies in the treatment of glioblastoma.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4481182 | PMC |
http://dx.doi.org/10.1016/j.celrep.2015.05.027 | DOI Listing |
Mol Cell Oncol
May 2016
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
Glioblastoma stem-like cells (GSCs) play a critical role in glioblastoma progression and recurrence. We discuss recent results on the role of the mitotic ubiquitin ligase cell division cycle 20-anaphase-promoting complex (CDC20-APC) in the governance of cardinal GSC functions through a mechanism involving the transcription factor sex-determining region Y-box 2 (SOX2). These findings expand the non-mitotic roles of CDC20-APC with implications for stem cell biology.
View Article and Find Full Text PDFCell Rep
June 2015
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department o
Glioblastoma harbors a dynamic subpopulation of glioblastoma stem-like cells (GSCs) that can propagate tumors in vivo and is resistant to standard chemoradiation. Identification of the cell-intrinsic mechanisms governing this clinically important cell state may lead to the discovery of therapeutic strategies for this challenging malignancy. Here, we demonstrate that the mitotic E3 ubiquitin ligase CDC20-anaphase-promoting complex (CDC20-APC) drives invasiveness and self-renewal in patient tumor-derived GSCs.
View Article and Find Full Text PDF