Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Herein, the apparent equilibrium dissociation constant, K(Dapp), between Cu(2+) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), a negatively charged phospholipid, was measured as a function of PS concentrations in supported lipid bilayers (SLBs). The results indicated that K(Dapp) for Cu(2+) binding to PS-containing SLBs was enhanced by a factor of 17,000 from 110 nM to 6.4 pM as the PS density in the membrane was increased from 1.0 to 20 mol %. Although Cu(2+) bound bivalently to POPS at higher PS concentrations, this was not the dominant factor in increasing the binding affinity. Rather, the higher concentration of Cu(2+) within the double layer above the membrane was largely responsible for the tightening. Unlike the binding of other divalent metal ions such as Ca(2+) and Mg(2+) to PS, Cu(2+) binding does not alter the net negative charge on the membrane as the Cu(PS)2 complex forms. As such, the Cu(2+) concentration within the double layer region was greatly amplified relative to its concentration in bulk solution as the PS density was increased. This created a far larger enhancement to the apparent binding affinity than is observed by standard multivalent effects. These findings should help provide an understanding on the extent of Cu(2+)-PS binding in cell membranes, which may be relevant to biological processes such as amyloid-β peptide toxicity and lipid oxidation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.5b03313 | DOI Listing |