98%
921
2 minutes
20
Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness. The identification and characterization of genes related to plant defense responses to fungal infection are essential to develop ASR-resistant plants. In this work, we describe four soybean genes, GmbZIP62, GmbZIP105, GmbZIPE1, and GmbZIPE2, which encode transcription factors containing a basic leucine zipper (bZIP) domain from two divergent classes, and that are responsive to P. pachyrhizi infection. Molecular phylogenetic analyses demonstrated that these genes encode proteins similar to bZIP factors responsive to pathogens. Yeast transactivation assays showed that only GmbZIP62 has strong transactivation activity in yeast. In addition, three of the bZIP transcription factors analyzed were also differentially expressed by plant defense hormones, and all were differentially expressed by fungal attack, indicating that these proteins might participate in response to ASR infection. The results suggested that these bZIP proteins are part of the plant defense response to P. pachyrhizi infection, by regulating the gene expression related to ASR infection responses. These bZIP genes are potential targets to obtain new soybean genotypes resistant to ASR.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10142-015-0445-0 | DOI Listing |
Plant Environ Interact
October 2025
Discipline of Plant Pathology, College of Agriculture, Engineering & Science; School of Agricultural, Earth and Environmental Sciences University of KwaZulu-Natal Pietermaritzburg Republic of South Africa.
Asian soybean rust (ASR) is caused by the biotrophic fungus Syd. & P. Syd.
View Article and Find Full Text PDFPhytopathology
July 2025
Corteva Agriscience Johnston Global Business Center, Research & Development, Johnston, Iowa, United States;
Asian soybean rust (ASR), caused by , poses a significant threat to soybean production, especially in South America. The gene ( Resistance against 1) has demonstrated robust resistance to ASR when introduced into soybean. This study explores the underlying mechanisms of -mediated resistance through integrated cytological, transcriptomic, and metabolomic analyses.
View Article and Find Full Text PDFPhytopathology
June 2025
UDSA/ARS, Mycotoxin Prevention and Applied Microbiology Research Unit, N. University St., Peoria, IL 61604, Peoria, Illinois, United States;
Soybean ( (L.) Merr.) is one of the most economically important crops in the world.
View Article and Find Full Text PDFFungal Genet Biol
June 2025
Brazilian Agricultural Research Corporation - National Soybean Research Center (Embrapa Soja), Paraná, Brazil. Electronic address:
Phakopsora pachyrhizi, an obligate biotrophic rust fungus, is the causal agent of Asian Soybean Rust (ASR) disease. Here, we utilized whole-genome data to explore the evolutionary patterns and population structure across 45 P. pachyrhizi isolates collected from 1972 to 2017 from diverse geographic regions worldwide.
View Article and Find Full Text PDFPlants (Basel)
November 2024
Laboratório da Interação Planta-Patógeno, Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa 36570-900, MG, Brazil.