98%
921
2 minutes
20
The purpose of this study was to investigate the formation and growth kinetics of complexes of proteins and oppositely charged polyelectrolytes. Equal volumes of IgG and dextran sulfate (DS) solutions, 0.01 mg/ml each in 10mM phosphate, pH 6.2, were mixed. At different time points, samples were taken and analyzed by nanoparticle tracking analysis (NTA), Micro-Flow Imaging (MFI) and size-exclusion chromatography (SEC). SEC showed a huge drop in monomer content (approximately 85%) already 2 min after mixing, while a very high nanoparticle (size up to 500 nm) concentration (ca. 9 × 10(8)/ml) was detected by NTA. The nanoparticle concentration gradually decreased over time, while the average particle size increased. After a lag time of about 1.5h, a steady increase in microparticles was measured by MFI. The microparticle concentration kept increasing up to about 1.5 × 10(6)/ml until it started to slightly decrease after 10h. The average size of the microparticles remained in the low-μm range (1-2 μm) with a slight increase and broadening of the size distribution in time. The experimental data could be fitted with Smoluchowski's perikinetic coagulation model, which was validated by studying particle growth kinetics in IgG:DS mixtures of different concentrations. In conclusion, the combination of NTA and MFI provided novel insight into the kinetics and mechanism of protein-polyelectrolyte complex formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2015.04.021 | DOI Listing |
Physiol Plant
September 2025
State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
The rice root system mediates nutrient uptake while adapting to tillage, management, and environmental changes. While optimized nitrogen (N) supply is known to enhance 2-acetyl-1-pyrroline (2-AP) biosynthesis in fragrant rice, the underlying mechanisms linking nitrogen availability, root development, and their combined effects on physiological processes and aroma formation remain unclear. To address this knowledge gap, we conducted a pot experiment employing two fragrant rice cultivars (Huahangxiangyinzhen and Qingxiangyou19xiang) under three nitrogen regimes (0, 1.
View Article and Find Full Text PDFAdv Wound Care (New Rochelle)
September 2025
Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, PR China.
Wound healing is a complex, tightly regulated process involving a range of enzymes, growth factors, and cytokines that coordinate cellular activities essential for tissue repair and wound closure. However, in cases of extensive or severe injury, the intrinsic repair mechanisms are often insufficient, underscoring the need for advanced therapeutic strategies to accelerate healing and minimize scar formation. Electrically conductive hydrogels (ECHs), combining the advantageous properties of hydrogels with the physiological and electrochemical characteristics of conductive materials, present a safer and more convenient alternative to traditional electrode-based electrical stimulation (ES) for treating chronic and nonhealing wounds.
View Article and Find Full Text PDFF1000Res
September 2025
Institute of Food and Biotechnology, Can Tho University, Can Tho City, Vietnam.
Background: has been extensively studied for its bioactive components and medicinal properties. This study was carried out to evaluate the fermentation ability of 2.1 yeast to determine suitable fermentation conditions.
View Article and Find Full Text PDFPhilos Trans A Math Phys Eng Sci
September 2025
D-BAUG, ETH Zurich, Zürich 8093, Switzerland.
Biofilms-microbial communities encased in a self-produced extracellular matrix-pose a significant challenge in clinical settings due to their association with chronic infections and antibiotic resistance. Their formation in the human body is governed by a complex interplay of biological and environmental factors, including the biochemical composition of bodily fluids, fluid dynamics, and cell-cell and cell-surface interactions. Improving therapeutic strategies requires a deeper understanding of how host-specific conditions shape biofilm development.
View Article and Find Full Text PDFFASEB J
September 2025
School of Biodiversity, One Health and Veterinary Medicine, Graham Kerr Building, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
Most animals experience abrupt developmental transitions involving major tissue remodeling, but the links with metabolic changes remain poorly understood. We examined ontogenetic changes in mitochondrial volume, oxidative capacity, oxygen consumption capacity, and anaerobic capacity across four organs (gut, liver, heart, and hindlimb muscle) in Xenopus laevis from metamorphosis to adulthood. These organs differ in the extent of developmental transformation.
View Article and Find Full Text PDF