98%
921
2 minutes
20
Cumulating evidence from epidemiologic studies implicates cardiovascular health and cerebrovascular function in several brain diseases in late life. We examined vascular risk factors with respect to a cerebrovascular measure of brain functioning in subjects in mid-life, which could represent a marker of brain changes in later life. Breath-hold functional MRI (fMRI) was performed in 541 women and men (mean age 50.4 years) from the Coronary Artery Risk Development in Young Adults (CARDIA) Brain MRI sub-study. Cerebrovascular reactivity (CVR) was quantified as percentage change in blood-oxygen level dependent (BOLD) signal in activated voxels, which was mapped to a common brain template and log-transformed. Mean CVR was calculated for anatomic regions underlying the default-mode network (DMN) - a network implicated in AD and other brain disorders - in addition to areas considered to be relatively spared in the disease (e.g. occipital lobe), which were utilized as reference regions. Mean CVR was significantly reduced in the posterior cingulate/precuneus (β=-0.063, 95% CI: -0.106, -0.020), anterior cingulate (β=-0.055, 95% CI: -0.101, -0.010), and medial frontal lobe (β=-0.050, 95% CI: -0.092, -0.008) relative to mean CVR in the occipital lobe, after adjustment for age, sex, race, education, and smoking status, in subjects with pre-hypertension/hypertension compared to normotensive subjects. By contrast, mean CVR was lower, but not significantly, in the inferior parietal lobe (β=-0.024, 95% CI: -0.062, 0.014) and the hippocampus (β=-0.006, 95% CI: -0.062, 0.050) relative to mean CVR in the occipital lobe. Similar results were observed in subjects with diabetes and dyslipidemia compared to those without these conditions, though the differences were non-significant. Reduced CVR may represent diminished vascular functionality for the DMN for individuals with prehypertension/hypertension in mid-life, and may serve as a preclinical marker for brain dysfunction in later life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4469180 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2015.04.039 | DOI Listing |
Cereb Cortex
August 2025
School of Psychology, University of Surrey, Stag Hill, Guildford, Surrey, GU2 7XH, United Kingdom.
Alpha oscillations have been implicated in the maintenance of working memory representations. Notably, when memorised content is spatially lateralised, the power of posterior alpha activity exhibits corresponding lateralisation during the retention interval, consistent with the retinotopic organisation of the visual cortex. Beyond power, alpha frequency has also been linked to memory performan ce, with faster alpha rhythms associated with enhanced retention.
View Article and Find Full Text PDFJ Vis
September 2025
Neuroscience Program, Western University, London, ON, Canada.
Studies of visual face processing often use flat images as proxies for real faces due to their ease of manipulation and experimental control. Although flat images capture many features of a face, they lack the rich three-dimensional (3D) structural information available when binocularly viewing real faces (e.g.
View Article and Find Full Text PDFEur J Neurosci
September 2025
The Tampa Human Neurophysiology Lab, Department of Neurosurgery, Brain and Spine, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA.
Sensory areas exhibit modular selectivity to stimuli, but they can also respond to features outside of their basic modality. Several studies have shown cross-modal plastic modifications between visual and auditory cortices; however, the exact mechanisms of these modifications are yet not completely known. To this aim, we investigated the effect of 12 min of visual versus sound adaptation (referring to forceful application of an optimal/nonoptimal stimulus to a neuron[s] under observation) on the infragranular and supragranular primary visual neurons (V1) of the cat (Felis catus).
View Article and Find Full Text PDFCereb Cortex
August 2025
Nencki Institute of Experimental Biology, PAS, 3 Pasteur Street, 02-093 Warsaw, Poland.
In the visual cortices, receptive fields (RFs) are arranged in a gradient from small sizes in the center of the visual field to the largest sizes at the periphery. Using functional magnetic resonance imaging (fMRI) mapping of population RFs, we investigated RF adaptation in V1, V2, and V3 in patients after long-term photoreceptor degeneration affecting the central (Stargardt disease [STGD]) and peripheral (Retinitis Pigmentosa [RP]) regions of the retina. In controls, we temporarily limited the visual field to the central 10° to model peripheral loss.
View Article and Find Full Text PDFEpilepsy Behav
September 2025
Department of Neurology, Yale University, 333 Cedar Street, New Haven, CT 06520, United States. Electronic address:
Temporal lobe epilepsy (TLE) is frequently associated with language impairment. This meta-analysis quantitatively synthesized data from 12 functional neuroimaging studies, including 390 TLE patients and 356 healthy controls (age range: 8.1-70 years; 57.
View Article and Find Full Text PDF