Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We have investigated the adsorption of CO2 molecules inside the EMT, SAO, SBS, SBT and IWS zeolites with respect to the influence of the Ir4 clusters on the adsorption capabilities of these materials. We have determined that the capabilities of CO2 adsorption depend on the combined effect of the framework topology and the position of the Ir4 cluster. Adsorption intensifies despite the fact that a fraction of the pore volume is occupied by the Ir4 cluster, and thus, the adsorption is more intense than that on empty zeolite. The pore topology however is also playing a crucial role in the effect, as in certain cases it allows the CO2 molecules to order in such a way they fill the most pore space.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmgm.2015.02.001 | DOI Listing |