A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa. | LitMetric

Mechanistic insights into elastin degradation by pseudolysin, the major virulence factor of the opportunistic pathogen Pseudomonas aeruginosa.

Sci Rep

1] State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, China [2] Biotechnology Research Center, Shandong University, Jinan 250100, China [3] Collaborative Innovation Center of Deep Sea Biology, Shandong University, Jinan 250100, China.

Published: April 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Pseudolysin is the most abundant protease secreted by Pseudomonas aeruginosa and is the major extracellular virulence factor of this opportunistic human pathogen. Pseudolysin destroys human tissues by solubilizing elastin. However, the mechanisms by which pseudolysin binds to and degrades elastin remain elusive. In this study, we investigated the mechanism of action of pseudolysin on elastin binding and degradation by biochemical assay, microscopy and site-directed mutagenesis. Pseudolysin bound to bovine elastin fibers and preferred to attack peptide bonds with hydrophobic residues at the P1 and P1' positions in the hydrophobic domains of elastin. The time-course degradation processes of both bovine elastin fibers and cross-linked human tropoelastin by pseudolysin were further investigated by microscopy. Altogether, the results indicate that elastin degradation by pseudolysin began with the hydrophobic domains on the fiber surface, followed by the progressive disassembly of macroscopic elastin fibers into primary structural elements. Moreover, our site-directed mutational results indicate that five hydrophobic residues in the S1-S1' sub-sites played key roles in the binding of pseudolysin to elastin. This study sheds lights on the pathogenesis of P. aeruginosa infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407726PMC
http://dx.doi.org/10.1038/srep09936DOI Listing

Publication Analysis

Top Keywords

elastin fibers
12
elastin
10
pseudolysin
9
elastin degradation
8
degradation pseudolysin
8
virulence factor
8
factor opportunistic
8
pseudomonas aeruginosa
8
pseudolysin elastin
8
bovine elastin
8

Similar Publications