A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Genetic information is a valuable component of biosystematics, especially specimen identification through the use of species-specific DNA barcodes. Although many genomics applications have shifted to High-Throughput Sequencing (HTS) or Next-Generation Sequencing (NGS) technologies, sample identification (e.g., via DNA barcoding) is still most often done with Sanger sequencing. Here, we present a scalable double dual-indexing approach using an Illumina Miseq platform to sequence DNA barcode markers. We achieved 97.3% success by using half of an Illumina Miseq flowcell to obtain 658 base pairs of the cytochrome c oxidase I DNA barcode in 1,010 specimens from eleven orders of arthropods. Our approach recovers a greater proportion of DNA barcode sequences from individuals than does conventional Sanger sequencing, while at the same time reducing both per specimen costs and labor time by nearly 80%. In addition, the use of HTS allows the recovery of multiple sequences per specimen, for deeper analysis of genetic variation in target gene regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401116PMC
http://dx.doi.org/10.1038/srep09687DOI Listing

Publication Analysis

Top Keywords

illumina miseq
12
dna barcode
12
specimen identification
8
miseq platform
8
sanger sequencing
8
dna
6
sequencing
5
massively parallel
4
parallel multiplex
4
multiplex dna
4

Similar Publications