A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Iron supply constrains producer communities in stream ecosystems. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current paradigm that stream producers are under exclusive macronutrient control was recently challenged by continental studies, demonstrating that iron supply constrained diatom biodiversity and energy flows. Using algal abundance and water chemistry data from the National Water-Quality Assessment Program, we determined for the first time community thresholds along iron gradients in non-acidic running waters, i.e. 30-79.5 μg L(-1) and 70-120 μg L(-1) in oligotrophic and eutrophic streams, respectively. Given that Fe concentrations fell below both thresholds in 50% of US streams, and below the eutrophic threshold in 75% of US streams, we suggest that Fe limitation is potentially widespread and attribute it to the restricted distribution of wetlands. We also report results from the first laboratory experiments on algal-iron interactions in streams, revealing that iron supplementation leads to significant biovolume and biodiversity increase in both nitrogen fixing and non-nitrogen fixing algae. Therefore, the progressive brownification of freshwaters due to rising dissolved organic carbon and iron levels can have a stimulating influence on microbial producers with cascading effects along the trophic hierarchy. Future research in running waters should focus on the role of iron in algal physiology and biofilm functions, including accumulation of biomass, fixing atmospheric nitrogen and improving water quality.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femsec/fiv041DOI Listing

Publication Analysis

Top Keywords

iron supply
8
running waters
8
iron
6
supply constrains
4
constrains producer
4
producer communities
4
communities stream
4
stream ecosystems
4
ecosystems current
4
current paradigm
4

Similar Publications