98%
921
2 minutes
20
Colletotrichum lindemuthianum is a hemibiotrophic fungal pathogen that causes anthracnose disease in common bean. Despite the genetics of anthracnose resistance has been studied for a long time, few quantitative trait loci (QTLs) studies have been conducted on this species. The present work examines the genetic basis of quantitative resistance to races 23 and 1545 of C. lindemuthianum in different organs (stem, leaf and petiole). A population of 185 recombinant inbred lines (RIL) derived from the cross PMB0225 × PHA1037 was evaluated for anthracnose resistance under natural and artificial photoperiod growth conditions. Using multi-environment QTL mapping approach, 10 and 16 main effect QTLs were identified for resistance to anthracnose races 23 and 1545, respectively. The homologous genomic regions corresponding to 17 of the 26 main effect QTLs detected were positive for the presence of resistance-associated gene cluster encoding nucleotide-binding and leucine-rich repeat (NL) proteins. Among them, it is worth noting that the main effect QTLs detected on linkage group 05 for resistance to race 1545 in stem, petiole and leaf were located within a 1.2 Mb region. The NL gene Phvul.005G117900 is located in this region, which can be considered an important candidate gene for the non-organ-specific QTL identified here. Furthermore, a total of 39 epistatic QTL (E-QTLs) (21 for resistance to race 23 and 18 for resistance to race 1545) involved in 20 epistatic interactions (eleven and nine interactions for resistance to races 23 and 1545, respectively) were identified. None of the main and epistatic QTLs detected displayed significant environment interaction effects. The present research provides essential information not only for the better understanding of the plant-pathogen interaction but also for the application of genomic assisted breeding for anthracnose resistance improvement in common bean through application of marker-assisted selection (MAS).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4362272 | PMC |
http://dx.doi.org/10.3389/fpls.2015.00141 | DOI Listing |
Plant Foods Hum Nutr
September 2025
Cape Horn International Center (CHIC), O'Higgins 310, Puerto Williams, 6350000, Chile.
Tofu from six different landraces of chilean common beans (Araucano, Cimarrón, Magnum, Peumo, Sapito, and Tortola) was prepared and analyzed for proximate and lipid composition, antioxidant capacity, and phenolic content. Tofu has higher protein and lipid content, lower carbohydrate and phenolic content, and shows antioxidant capacity. The highest total protein was found for tofu prepared from Cimarrón and Sapito beans.
View Article and Find Full Text PDFFront Plant Sci
August 2025
London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.
Many market classes of common beans () have a significant reduction in crop value due to the postharvest darkening of the seed coat. Seed coat darkening is caused by an elevated accumulation and oxidation of proanthocyanidins (PAs). In common bean, the major color gene encodes for a bHLH protein with its allele controlling the postharvest slow darkening seed coat trait.
View Article and Find Full Text PDFBreed Sci
April 2025
Tokyo University of Agriculture, 196 Yasaka, Abashiri-shi, Hokkaido 099-2493, Japan.
Japanese red or white common bean ( L.) cultivars, used to make sweetened boiled beans, are called "kintoki" beans. Kintoki beans are planted to precede winter wheat for crop rotation in Hokkaido, northern Japan.
View Article and Find Full Text PDFBMC Plant Biol
August 2025
Crop Science Department, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt.
Background: One of the most widely consumed legumes worldwide is the common bean. Abiotic stress factors such as heat stress significantly reduce crop productivity, and climate change models predict rising temperatures in many agricultural regions. In the 2021 and 2022 seasons, two field trials were conducted in the Wadi El Natrun Region, El-Behera Governorate, Egypt.
View Article and Find Full Text PDFInsects
July 2025
Department of Ecology and Evolution, UC Irvine, Irvine, CA 92697, USA.
The common bed bug, L., is a pervasive pest of humans throughout the world. Insecticide resistance, cryptic habits, and proclivity for harborage on human belongings have contributed to its global status as a difficult pest to control.
View Article and Find Full Text PDF