Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bactofilins are novel cytoskeleton proteins that are widespread in Gram-negative bacteria. Myxococcus xanthus, an important predatory soil bacterium, possesses four bactofilins of which one, BacM (Mxan_7475) plays an important role in cell shape maintenance. Electron and fluorescence light microscopy, as well as studies using over-expressed, purified BacM, indicate that this protein polymerizes in vivo and in vitro into ~3 nm wide filaments that further associate into higher ordered fibers of about 10 nm. Here we use a multipronged approach combining secondary structure determination, molecular modeling, biochemistry, and genetics to identify and characterize critical molecular elements that enable BacM to polymerize. Our results indicate that the bactofilin-determining domain DUF583 folds into an extended β-sheet structure, and we hypothesize a left-handed β-helix with polymerization into 3 nm filaments primarily via patches of hydrophobic amino acid residues. These patches form the interface allowing head-to-tail polymerization during filament formation. Biochemical analyses of these processes show that folding and polymerization occur across a wide variety of conditions and even in the presence of chaotropic agents such as one molar urea. Together, these data suggest that bactofilins are comprised of a structure unique to cytoskeleton proteins, which enables robust polymerization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4372379PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0121074PLOS

Publication Analysis

Top Keywords

myxococcus xanthus
8
extended β-sheet
8
β-sheet structure
8
cytoskeleton proteins
8
bactofilin cytoskeleton
4
cytoskeleton protein
4
bacm
4
protein bacm
4
bacm myxococcus
4
xanthus forms
4

Similar Publications

DZ2, a model myxobacterium, has three reported genome assemblies, including two recent complete assemblies (MxDZ2_Tam and MxDZ2_Nan) from the same culture stock. These assemblies misreported their circular nature and differed by 6.4 kb, raising questions about their accuracy.

View Article and Find Full Text PDF

Due to the prevalence and importance of dormant microbial forms in regulating microbial ecosystems, the generation of dormant structures, like spores, has been extensively studied. However, several aspects of the exit of bacterial spores from dormancy, i.e.

View Article and Find Full Text PDF

Under starvation conditions, a spot of a few million Myxococcus xanthus cells on agar will migrate inward to form aggregates that mature into dome-shaped fruiting bodies. This migration is thought to occur within structures called 'streams,' which are considered crucial for initiating aggregation. The prevailing traffic jam model hypothesizes that intersections of streams cause cell crowding and 'jamming,' thereby initiating the process of aggregate formation.

View Article and Find Full Text PDF

Many bacteria form spores to endure unfavorable conditions. While generate endospores through cell division, sporulation in non-Firmicutes remains less understood. The Gram-negative bacterium undergoes sporulation through two distinct mechanisms: rapid sporulation triggered by chemical induction and slow sporulation driven by starvation, both occurring independently of cell division.

View Article and Find Full Text PDF

Bacteria generally form only simple multicellular structures lacking the stable cell-cell connections characteristic of eukaryotic tissues. However, when the antibiotic moenomycin modifies peptidoglycan cell wall synthesis, rod-shaped cells of the Gram-negative bacterium become spherical, fuse their outer membranes, and assemble into stable, honeycomb-like lattices resembling eukaryotic tissues. These findings raise the intriguing possibility that some tissue-like organization could have evolved from stress-induced responses in bacterial ancestors.

View Article and Find Full Text PDF