Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The formation of laser-induced periodic surface structures (LIPSS) on model spin-coated polymer films has been followed in situ by grazing incidence small-angle X-ray scattering (GISAXS) using synchrotron radiation. The samples were irradiated at different repetition rates ranging from 1 up to 10 Hz by using the fourth harmonic of a Nd:YAG laser (266 nm) with pulses of 8 ns. Simultaneously, GISAXS patterns were acquired during laser irradiation. The variation of both the GISAXS signal with the number of pulses and the LIPSS period with laser irradiation time is revealing key kinetic aspects of the nanostructure formation process. By considering LIPSS as one-dimensional paracrystalline lattice and using a correlation found between the paracrystalline disorder parameter, g, and the number of reflections observed in the GISAXS patterns, the variation of the structural order of LIPSS can be assessed. The role of the laser repetition rate in the nanostructure formation has been clarified. For high pulse repetition rates (i.e., 10 Hz), LIPSS evolve in time to reach the expected period matching the wavelength of the irradiating laser. For lower pulse repetition rates LIPSS formation is less effective, and the period of the ripples never reaches the wavelength value. Results support and provide information on the existence of a feedback mechanism for LIPSS formation in polymer films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.5b00285DOI Listing

Publication Analysis

Top Keywords

polymer films
12
repetition rates
12
laser-induced periodic
8
periodic surface
8
surface structures
8
formation polymer
8
grazing incidence
8
incidence small-angle
8
small-angle x-ray
8
x-ray scattering
8

Similar Publications

Directed message passing neural networks enhanced graph convolutional learning for accurate polymer density prediction.

J Chem Phys

September 2025

National Synchrotron Radiation Laboratory, State Key Laboratory of Advanced Glass Materials, Anhui Provincial Engineering Research Center for Advanced Functional Polymer Films, University of Science and Technology of China, Hefei, Anhui 230029, China.

Polymer density is a critical factor influencing material performance and industrial applications, and it can be tailored by modifying the chemical structure of repeating units. Traditional polymer density characterization methods rely heavily on domain expertise; however, the vast chemical space comprising over one million potential polymer structures makes conventional experimental screening inefficient and costly. In this study, we proposed a machine learning framework for polymer density prediction, rigorously evaluating four models: neural networks (NNs), random forest (RF), XGBoost, and graph convolutional neural networks (GCNNs).

View Article and Find Full Text PDF

We reveal contrasting behaviors in molecular motion between the two materials, including the identification of resonance-enhanced dynamic features in elastomers. We present a depth-resolved analysis of molecular dynamics in semicrystalline polytetrafluoroethylene (PTFE) and fully amorphous fluorinated elastomer (SIFEL) films using static-gradient solid-state F NMR imaging. By measuring spin-lattice relaxation rates ( ) at multiple frequencies and evaluating the corresponding spectral density functions, we reveal distinct dynamic behaviors between the two materials.

View Article and Find Full Text PDF

Enhancement of the optical, electrical, and dielectric properties of PEO/CMC matrix via NaPc dye additive for optoelectronic devices.

Int J Biol Macromol

September 2025

Department of Physics, Faculty of Education, Seiyun University, Hadhramout, Yemen. Electronic address:

In the present study, polymer composite samples were fabricated using the casting technique by incorporating varying weight percentages (0.0, 0.1, 0.

View Article and Find Full Text PDF

Evaluation of crosslinked cellulose-based solid and gel polymer electrolytes in lithium-ion batteries.

Int J Biol Macromol

September 2025

Faculty of Polymer Engineering, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran; Institute of Polymeric Materials, Sahand University of Technology, P.O. Box 51335-1996, Tabriz, Iran. Electronic address:

In order to develop an alternate material for energy storage devices like batteries, this research is being done to create polymer electrolytes based on cellulose as natural polymer. Natural polymers as battery components have a number of advantages, including availability, biodegradability, unleakage, stable form, superior process, electrochemical stability, and low cost. In this study, polymer electrolytes based on cellulose have been synthesized by solution casting to prepare a thin polymer films.

View Article and Find Full Text PDF

Cyclization-enhanced photoactivatable reversible room-temperature phosphorescence for efficient real-time light printing.

Chem Sci

August 2025

State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA Key Laboratory for Research and Evaluation of Innovative Drug, School of Chemistry and Chemical Engineering, Henan Normal University 46 Jianshe Road Xinxiang 453007 China +86

The construction of polymer-based photoactivated room-temperature phosphorescence systems remains a prominent research focus, yet the development of ultrafast activated systems under ambient conditions continues to pose a challenge. In this study, cyclized phenothiazine derivatives bearing diverse substituents are synthesized and incorporated into an amorphous polyvinyl alcohol (PVA) matrix, resulting in significantly enhanced dynamic photoactivation characteristics compared with those of their pristine monomeric counterparts. Under ambient conditions and 2 s irradiation, the lifetime and quantum yield of C[4]PTZ-OH@PVA increase by factors of 1.

View Article and Find Full Text PDF