98%
921
2 minutes
20
To improve treatment of obesity, a contributing factor to multiple systemic and metabolic diseases, a better understanding of metabolic state and environmental stress at the cellular level is essential. This work presents development of a three-dimensional (3D) in vitro model of adipose tissue displaying induced lipid accumulation as a function of fatty acid supplementation that, subsequently, investigates cellular responses to a pro-inflammatory stimulus, thereby recapitulating key stages of obesity progression. Three-dimensional spheroid organization of adipose cells was induced by culturing 3T3-L1 mouse preadipocytes on an elastin-like polypeptide-polyethyleneimine (ELP-PEI)-coated surface. Results indicate a more differentiated phenotype in 3D spheroid cultures relative to two-dimensional (2D) monolayer analogues based on triglyceride accumulation, CD36 and CD40 protein expression, and peroxisome proliferator-activated receptor-γ (PPAR-γ) and adiponectin mRNA expression. The 3T3-L1 adipocyte spheroid model was then used to test the effects of a pro-inflammatory microenvironment, namely maturation in the presence of elevated fatty acid levels followed by acute exposure to tumor necrosis factor alpha (TNF-α). Under these conditions, we demonstrate that metabolic function was reduced across all cultures exposed to TNF-α, especially so when pre-exposed to linoleic acid. Further, in response to TNF-α, enhanced lipolysis, monitored as increased extracellular glycerol and fatty acids levels, was observed in adipocytes cultured in the presence of exogenous fatty acids. Taken together, our 3D spheroid model showed enhanced adipogenic differentiation and presents a platform for elucidating the key phenotypic responses that occur in pro-inflammatory microenvironments that characterize obesogenic states.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2014.0531 | DOI Listing |
Biomater Sci
September 2025
Biotechnology Science and Engineering Program, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
B cells are critical components of the adaptive immune system that proliferate and differentiate within the secondary lymphoid organs upon recognition of antigens and engagement of T cells. Traditional two-dimensional (2D) cell cultures fall short of replicating the intricate structures and dynamic evolution of three-dimensional (3D) environments found in lymphoid organs, prompting the development of more physiologically pertinent models. Our approach employs -hexanoyl glycol chitosan (HGC) coated ultra-low attachment (ULA) lattice plates to cultivate a 3D co-culture of CD40L-expressing MS5 stromal cells and naïve B cells derived from the peripheral blood mononuclear cells (PBMCs) of healthy human donors.
View Article and Find Full Text PDFJ Microbiol Biotechnol
September 2025
Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea.
Enterohemorrhagic (EHEC), a pathotype within the Shiga toxin-producing (STEC) group, is a major etiological agent of severe gastrointestinal illness and life-threatening sequelae, including hemolytic uremic syndrome. Although insights into EHEC pathogenesis have been gained through traditional 2D cell culture systems and animal models, these platforms are limited in their ability to recapitulate human-specific physiological responses and tissue-level interactions. Recent progress in three-dimensional (3D) cell culture systems, such as spheroids, organoids, and organ-on-a-chip (OoC) technologies, has enabled more physiologically relevant models for investigating host-pathogen dynamics.
View Article and Find Full Text PDFDrug Deliv Transl Res
September 2025
Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, 300044, Taiwan.
The three-dimensional (3D) culture system has emerged as an indispensable platform for modulating stem cell function in biomedicine, drug screening, and cell therapy. Despite a few studies confirming the functionality of 3D culture, the molecular factors underlying this process remain obscure. Here, we have utilized a hanging drop method to generate 3D spheroid-derived mesenchymal stem cells (3D MSCs) and compared them to conventionally 2D-cultured MSCs.
View Article and Find Full Text PDFMol Pharmacol
August 2025
Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland. Electronic address:
Although multiparameter cellular morphological profiling methods and three-dimensional (3D) biological model systems can potentially provide complex insights for pharmaceutical discovery campaigns, there have been relatively few reports combining these experimental approaches. In this study, we used the U87 glioblastoma cell line grown in a 3D spheroid format to validate a multiparameter cellular morphological profiling screening method. The steps of this approach include 3D spheroid treatment, cell staining, fully automated digital image acquisition, image segmentation, numerical feature extraction, and multiple machine learning approaches for cellular profiling.
View Article and Find Full Text PDFInt J Mol Med
November 2025
College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China.
Traditional cancer research generally utilizes commercial immortalized cancer cell lines cultivated in two‑dimensional (2D) culture systems. However, as cell‑cell/cell‑matrix interactions and the microenvironment cannot be explored , 2D cell culture models inadequately replicate the phenotype and physiology of original tissues. Therefore, three‑dimensional (3D) cell culture technologies, such as organoids, which present potential for mimicking the features of primary solid tumors , may be useful in cancer research.
View Article and Find Full Text PDF