98%
921
2 minutes
20
Alzheimer's disease (AD) is a neurodegenerative brain disorder and the most common cause of dementia. New treatments for AD are required due to its increasing prevalence in aging populations. The present study evaluated the effects of the active components of , and on learning and memory impairment, β-amyloid (Aβ) reduction and brain iron load in an APP/PS1 transgenic mouse model of AD. Increasing evidence indicates that a disturbance of normal iron homeostasis may contribute to the pathology of AD. However, the underlying mechanisms resulting in abnormal iron load in the AD brain remain unclear. It has been hypothesized that the brain iron load is influenced by the deregulation of certain proteins associated with brain iron metabolism, including divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1). The present study investigated the effects of the active components of , and on the expression levels of DMT1 and FPN1. The treatment with the active components reduced cognitive deficits, inhibited Aβ plaque accumulation, reversed Aβ burden and reduced the brain iron load in AD model mice. A significant increase was observed in the levels of DMT1-iron-responsive element (IRE) and DMT1-nonIRE in the hippocampus of the AD mouse brain, which was reduced by treatment with the active components. In addition, the levels of FPN1 were significantly reduced in the hippocampus of the AD mouse brain compared with those of control mice, and these levels were increased following treatment with the active components. Thus, the present study indicated that the active components of , and may exert a neuroprotective effect against AD by reducing iron overload in the AD brain and may provide a novel approach for the development of drugs for the treatment of AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4353762 | PMC |
http://dx.doi.org/10.3892/etm.2015.2234 | DOI Listing |
Am J Chin Med
September 2025
Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
Astragaloside IV (ASIV), the main active component of the traditional Chinese medicine HuangQi, exhibits ameliorating effects on myocardial fibrosis through unclear mechanisms. To investigate the effects of ASIV on Endothelial-to-mesenchymal transition (EndMT) in myocardial fibrosis, 10 ng/mL TGF-β1 was used to induce EndMT in human umbilical vein endothelial cells (HUVECs) and a 5 mg/kg/d subcutaneous injection of Isoproterenol (ISO) was used to induce myocardial fibrosis in mice . The drug affinity-responsive target stability (DARTS) was used to identify the target proteins of ASIV in endothelial cells.
View Article and Find Full Text PDFFEBS J
September 2025
Department of Molecular Microbiology, John Innes Centre, Norwich, UK.
Understanding the molecular basis of regulated nitrogen (N) fixation is essential for engineering N-fixing bacteria that fulfill the demand of crop plants for fixed nitrogen, reducing our reliance on synthetic nitrogen fertilizers. In Azotobacter vinelandii and many other members of Proteobacteria, the two-component system comprising the anti-activator protein (NifL) and the Nif-specific transcriptional activator (NifA)controls the expression of nif genes, encoding the nitrogen fixation machinery. The NifL-NifA system evolved the ability to integrate several environmental cues, such as oxygen, nitrogen, and carbon availability.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming 650224, China. Electronic address:
The cerambycid beetles are important components in the terrestrial ecosystem as they play a dual role in both degrading dying trees and killing healthy plants. The factors including human activity, habitat contraction, climate changes and pesticide use have been shaping the adaptation of beetles to host plants and the environment. As suggested in research on the functions of beetles' olfactory proteins, odorant binding proteins (OBPs) have been found to be involved in insecticide resistance other than chemoreception.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China; Key Laboratory for Agro-Biodiversity and Pest Control of Ministry of Education, College of Plant Protection, Yunnan Agricultural University, Kunming, China; China France
Developing a practical strategy to enhance the quality of medicinal herb while alleviating negative plant-soil feedback (NPSF) is critical for agriculture. In this study, we investigated the effects of selenium nanoparticles (SeNPs) on Panax notoginseng through a two-year field experiment. Four treatments were established: a control (SeNPs_0) and three SeNPs concentrations (3, 5, and 10 mg/L), which were foliar-sprayed every 15 days for a total of six applications.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
College of Forestry, East China Woody Fragrance and Flavor Engineering Research Center of National Forestry and Grassland Administration; Jiangxi Provincial Key Laboratory of Improved Variety Breeding and Efficient Utilization of Native Tree Species and College of Agronomy, Key Laboratory of Crop Ph
Rhizoctonia solani (R. solani) is a phytopathogen that extensively affects crops, leading to plant diseases and reducing crop yields, which jeopardizes food security. β-pinene is a major component of turpentine oil and serves as a lead compound for developing new fungicides.
View Article and Find Full Text PDF