A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Determining the subcellular location of synthesis and assembly of the cell wall polysaccharide (1,3; 1,4)-β-D-glucan in grasses. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The current dogma for cell wall polysaccharide biosynthesis is that cellulose (and callose) is synthesized at the plasma membrane (PM), whereas matrix phase polysaccharides are assembled in the Golgi apparatus. We provide evidence that (1,3;1,4)-β-D-glucan (mixed-linkage glucan [MLG]) does not conform to this paradigm. We show in various grass (Poaceae) species that MLG-specific antibody labeling is present in the wall but absent over Golgi, suggesting it is assembled at the PM. Antibodies to the MLG synthases, cellulose synthase-like F6 (CSLF6) and CSLH1, located CSLF6 to the endoplasmic reticulum, Golgi, secretory vesicles, and the PM and CSLH1 to the same locations apart from the PM. This pattern was recreated upon expression of VENUS-tagged barley (Hordeum vulgare) CSLF6 and CSLH1 in Nicotiana benthamiana leaves and, consistent with our biochemical analyses of native grass tissues, shown to be catalytically active with CSLF6 and CSLH1 in PM-enriched and PM-depleted membrane fractions, respectively. These data support a PM location for the synthesis of MLG by CSLF6, the predominant enzymatically active isoform. A model is proposed to guide future experimental approaches to dissect the molecular mechanism(s) of MLG assembly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558670PMC
http://dx.doi.org/10.1105/tpc.114.135970DOI Listing

Publication Analysis

Top Keywords

cslf6 cslh1
12
location synthesis
8
cell wall
8
wall polysaccharide
8
cslf6
5
determining subcellular
4
subcellular location
4
synthesis assembly
4
assembly cell
4
polysaccharide 14-β-d-glucan
4

Similar Publications