Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The aim of this study was to evaluate and compare the effects of resin infiltration and sealant type on enamel surface properties and Streptococcus mutans adhesion to artificial enamel lesions. Artificial enamel lesions were produced on the surfaces of 120 enamel specimens, which were divided into two groups: Group A and Group B (n=60 per group). Each group was further divided into four subgroups (n=15 per subgroup) according to sealant type: Group I-Demineralized enamel (control); Group II-Enamel Pro Varnish; Group III-ExciTE F; and Group IV-Icon. In Group A, hardness and surface roughness were evaluated; in Group B, bacterial adhesion was evaluated. Icon application resulted in significantly lower surface roughness and higher hardness than the other subgroups in Group A. In Group B, Enamel Pro Varnish resulted in lowest bacterial adhesion, followed by Icon. This study showed that resin infiltration of enamel lesions could arrest lesion progress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4012/dmj.2014-078 | DOI Listing |