Transpiration and water-use efficiency in mixed-species forests versus monocultures: effects of tree size, stand density and season.

Tree Physiol

Chair of Silviculture, Faculty of Environment and Natural Resources, Freiburg University, Tennenbacherstr. 4, 79108 Freiburg, Germany

Published: March 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mixtures can be more productive than monocultures and may therefore use more water, which may make them more susceptible to droughts. The species interactions that influence growth, transpiration and water-use efficiency (WUE, tree growth per unit transpiration) within a given mixture vary with intra- and inter-annual climatic variability, stand density and tree size, but these effects remain poorly quantified. These relationships were examined in mixtures and monocultures of Eucalyptus globulus Labill. and Acacia mearnsii de Wildeman. Growth and transpiration were measured between ages 14 and 15 years. All E. globulus trees in mixture that were growing faster than similar sized trees in monocultures had higher WUE, while trees with similar growth rates had similar WUE. By the age of 14 years A. mearnsii trees were beginning to senesce and there were no longer any relationships between tree size and growth or WUE. The relationship between transpiration and tree size did not differ between treatments for either species, so stand-level increases in transpiration simply reflected the larger mean tree size in mixtures. Increasing neighbourhood basal area increased the complementarity effect on E. globulus growth and transpiration. The complementarity effect also varied throughout the year, but this was not related to the climatic seasonality. This study shows that stand-level responses can be the net effect of a much wider range of individual tree-level responses, but at both levels, if growth has not increased for a given species, it appears unlikely that there will be differences in transpiration or WUE for that species. Growth data may provide a useful initial indication of whether mixtures have higher transpiration or WUE, and which species and tree sizes contribute to this effect.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tpv011DOI Listing

Publication Analysis

Top Keywords

tree size
20
growth transpiration
12
transpiration
9
transpiration water-use
8
water-use efficiency
8
stand density
8
growth
8
transpiration wue
8
wue species
8
tree
7

Similar Publications

Ubiquity of cancer across the tree of life yields opportunities to understand variation in cancer defences across species. Peto's paradox, the finding that large-bodied species do not suffer from more cancer despite having more cells at risk of oncogenic mutations compared to small species, can be explained if large size selects for better cancer defences. Since birds live longer than non-flying mammals of equivalent size, and are descendants of moderate-sized dinosaurs, we ask whether ancestral cancer defences are retained if body size shrinks in a lineage.

View Article and Find Full Text PDF

Genomes are composed of a mosaic of segments inherited from different ancestors, each separated by past recombination events. Consequently, genealogical relationships among multiple genomes vary spatially across different genomic regions. Genealogical variation among unlinked (uncorrelated) genomic regions is well described for either a single population (coalescent) or multiple structured populations (multispecies coalescent).

View Article and Find Full Text PDF

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder lacking objective biomarkers for early diagnosis. DNA methylation is a promising epigenetic marker, and machine learning offers a data-driven classification approach. However, few studies have examined whole-blood, genome-wide DNA methylation profiles for ASD diagnosis in school-aged children.

View Article and Find Full Text PDF

The Asiatic apple leafminer, Phyllonorycter ringoniella (Matsumura), is a significant secondary pest of apple trees in Northeast Asia. To better understand its population dynamics, a population model based on temperature-developmental relationships was constructed. This model includes three sub-models: spring emergence, immature stage transition, and adult oviposition.

View Article and Find Full Text PDF

A model-free method for genealogical inference without phasing and its application for topology weighting.

Genetics

September 2025

Institute of Ecology and Evolution, School of Biological Sciences, The University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom.

Recent advances in methods to infer and analyse ancestral recombination graphs (ARGs) are providing powerful new insights in evolutionary biology and beyond. Existing inference approaches tend to be designed for use with fully-phased datasets, and some rely on model assumptions about demography and recombination rate. Here I describe a simple model-free approach for genealogical inference along the genome from unphased genotype data called Sequential Tree Inference by Collecting Compatible Sites (sticcs).

View Article and Find Full Text PDF