Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

TGF-β signalling plays a key role in the patterning of metazoan body plans and growth. It is widely regarded as a 'module' capable of co-option into novel functions. The TGF-β pathway arose in the Metazoan lineage, and while it is generally regarded as well conserved across evolutionary time, its components have been largely studied in the Ecdysozoa and Deuterostomia. The recent discovery of the Nodal molecule in molluscs has underlined the necessity of untangling this signalling network in lophotrochozoans in order to truly comprehend the evolution, conservation and diversification of this key pathway. Three novel genome resources, the mollusc Patella vulgata, annelid Pomatoceros lamarcki and rotifer Brachionus plicatilis, along with other publicly available data, were searched for the presence of TGF-β pathway genes. Bayesian and Maximum Likelihood analyses, along with some consideration of conserved domain structure, was used to confirm gene identity. Analysis revealed conservation of key components within the canonical pathway, allied with extensive diversification of TGF-β ligands and partial loss of genes encoding pathway inhibitors in some lophotrochozoan lineages. We fully describe the TGF-β signalling cassette of a range of lophotrochozoans, allowing firm inference to be drawn as to the ancestral state of this pathway in this Superphylum. The TGF-β signalling cascade's reputation as being highly conserved across the Metazoa is reinforced. Diversification within the activin-like complement, as well as potential wide loss of regulatory steps in some Phyla, hint at specific evolutionary implications for aspects of this cascade's functionality in this Superphylum.

Download full-text PDF

Source
http://dx.doi.org/10.1387/ijdb.140080nkDOI Listing

Publication Analysis

Top Keywords

tgf-β signalling
16
signalling cassette
8
conservation key
8
tgf-β pathway
8
pathway
7
signalling
6
tgf-β
6
lophotrochozoan tgf-β
4
diversification
4
cassette diversification
4

Similar Publications

Targeting the gut-liver axis with dietary polyphenols to ameliorate metabolic dysfunction-associated steatotic liver disease: advances in molecular mechanisms.

Crit Rev Food Sci Nutr

September 2025

Hunan Key Laboratory of Deep Processing and Quality Control of Cereals and Oils, State Key Laboratory of Utilization of Woody Oil Resource, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China.

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a condition that results from metabolic disorders. In addition to genetic factors, irregular and high-energy diets may also significantly contribute to its pathogenesis. Dietary habits can profoundly alter the composition of gut microbiota and metabolites.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

It is helpful for diagnostic purposes to improve our current knowledge of gut development and serum biochemistry in young piglets. This study investigated serum biochemistry, and gut site-specific patterns of short-chain fatty acids (SCFA) and expression of genes related to barrier function, innate immune response, antioxidative status and sensing of fatty and bile acids in suckling and newly weaned piglets. The experiment consisted of two replicate batches with 10 litters each.

View Article and Find Full Text PDF

At present, flexible sensors are a hot spot in research and experimental development, but the research on flexible sensors that can be used for human motion monitoring still needs to be deepened. In this work, the green material cellulose acetate (CA) was used as the matrix material, the film was made by electrospinning, crushed by a cell grinder and sodium alginate (SA) was added to promote the uniform dispersion of nanofibers in water, and then methyltrimethoxysilane (MTMS) and MXene nanosheet dispersion were added to make it hydrophobic and good conductivity, and the aerogel precursor solution was prepared, and then the CA/SA/MTMS/MXene aerogel with directional holes was prepared by directional freeze-drying. As a flexible sensor material, it can be used for human wear, monitoring the electrical signals generated by the movement of human joints and other parts, and can still maintain a current of about 0.

View Article and Find Full Text PDF

An Antibacterial and Electroactive Chitosan-Based Dressing with Dual Stimulus-Responsive Drug Delivery for Wound Healing.

Macromol Rapid Commun

September 2025

Key Laboratory of Textile Science & Technology, College of Textiles, Ministry of Education, Donghua University, Shanghai, China.

Persistent bacterial infections remain a major challenge in wound management. Although drug-loaded wound dressings have gained increasing attention, their therapeutic efficacy is often hindered by uncontrolled drug release and a lack of electrical signal responsiveness. Herein, an antibacterial dressing (CCS-PC) with electroactivity and stimulus-responsive drug release properties was fabricated via electro-assembly, wherein chitosan and ciprofloxacin hydrochloride (CIP) were co-deposited onto polypyrrole (PPy)-coated gauze.

View Article and Find Full Text PDF