Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding tropical forest diversity is a long-standing challenge in ecology. With global change, it has become increasingly important to understand how anthropogenic and natural factors interact to determine diversity. Anthropogenic increases in fire frequency are among the global change variables affecting forest diversity and functioning, and seasonally dry forest of the southern Amazon is among the ecosystems most affected by such pressures. Studying how fire will impact forests in this region is therefore important for understanding ecosystem functioning and for designing effective conservation action. We report the results of an experiment in which we manipulated fire, nutrient availability, and herbivory. We measured the effects of these interacting factors on the regenerative capacity of the ecotone between humid Amazon forest and Brazilian savanna. Regeneration density, diversity, and community composition were severely altered by fire. Additions of P and N + P reduced losses of density and richness in the first year post-fire. Herbivory was most important just after germination. Diversity was positively correlated with herbivory in unburned forest, likely because fire reduced the number of reproductive individuals. This contrasts with earlier results from the same study system in which herbivory was related to increased diversity after fire. We documented a significant effect of fire frequency; diversity in triennially burned forest was more similar to that in unburned than in annually burned forest, and the community composition of triennially burned forest was intermediate between unburned and annually burned areas. Preventing frequent fires will therefore help reduce losses in diversity in the southern Amazon's matrix of human-altered landscapes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-015-3259-9DOI Listing

Publication Analysis

Top Keywords

burned forest
12
frequent fires
8
southern amazon
8
forest
8
diversity
8
forest diversity
8
global change
8
fire frequency
8
community composition
8
triennially burned
8

Similar Publications

Forest fires have a significant impact on forest fauna, killing not only mammals and birds, but also less noticeable representatives of forest fauna - insects. Existing research have mainly studied the effects on vertebrate taxa, but the data on the effects of fires on the number of insects living in forests is currently insufficient to cover all the groups. The research presented in this paper examines the immediate impact of forest fires on the number of adults in mosquito populations (Culicidae) in burned areas of the boreal forest.

View Article and Find Full Text PDF

Prospects for silvicultural enhancement of fire resistance in mesic westside forests of the Pacific Northwest.

PLoS One

September 2025

United States Department of Agriculture Forest Service, Pacific Northwest Research Station, Portland Oregon, United States of America.

Increasing wildfire activity in mesic, temperate Pacific Northwest forests west of the Cascade Range crest has stimulated interest in understanding whether alternative forest management practices could reduce risk of stand-replacing fire. To explore how management can enhance fire resistance in these forests and assess tradeoffs among resistance enhancement, carbon sequestration and storage, and economic returns, we conducted 40-year simulations of stand development with BioSum, a framework for conducting landscape analysis with the Forest Vegetation Simulator (FVS), utilizing a statistically representative and spatially balanced sample of Forest Inventory and Analysis (FIA) plots. Simulation outcomes under business-as-usual silviculture were contrasted with fire-aware silviculture, and treatment optimization logic was developed and applied to represent landscape-scale outcomes under business-as-usual and fire-focused management scenarios.

View Article and Find Full Text PDF

Tropical peatlands are globally significant ecosystems for carbon cycling and storage, hydrological regulation, and unique biodiversity. There is a diversity of tropical peatland types globally, but tropical peat-forming ecosystems are typically forested without the Sphagnum groundcover that is often characteristic of high-latitude peatlands. Here, we report on a unique tropical peatland situated in Belize that challenges our understanding of both tropical and extra-tropical peatlands owing to the presence of Sphagnum in the undergrowth.

View Article and Find Full Text PDF

Forest fires are integral to forest ecosystems as they influence nutrient cycling, plant regeneration, tree density, and biodiversity. However, human-induced climate change and activities have made forest fires more frequent, more intense, and more widespread, exacerbating their ecological and socioeconomic impact. Forest fires shape Tamil Nadu's diverse forest ecosystems, yet rising anthropogenic pressure and a warmer, drier climate have increased both their frequency and severity.

View Article and Find Full Text PDF

Development and validation of web-based, interpretable predictive models for sepsis and mortality in extensive burns.

Front Cell Infect Microbiol

September 2025

Department of Burns and Plastic Surgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.

Background: Burn injuries are a common cause of trauma globally, with extensive burns (≥ 50% total body surface area burned) associated with high rates of sepsis and mortality. This study aims to identify risk factors associated with sepsis and mortality in extensively burned patients and to develop accurate, interpretable predictive models via machine learning algorithms.

Methods: A retrospective cohort study was conducted utilizing data from two Burn Critical Care Units in Eastern China from 2012-2023.

View Article and Find Full Text PDF