Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Transforming growth factor-β (TGF-β) mediates growth-inhibitory effects on most target cells via activation of the canonical SMAD signaling pathway. This growth-inhibitory activity may be coupled with cellular differentiation. Our studies demonstrate that TGF-β1 inhibits proliferation of primary, non-transformed human lung fibroblasts in association with the induction of myofibroblast differentiation. Differentiated myofibroblasts maintain the capacity to proliferate in response to exogenous mitogenic stimuli and are resistant to serum deprivation-induced apoptosis. These proliferative and anti-apoptotic properties of myofibroblasts are related, in part, to the down-regulation of caveolin-1 (Cav-1) by TGF-β1. Cav-1 down-regulation is mediated by early activation of p38 MAPK and does not require SMAD signaling. In contrast, myofibroblast differentiation is dependent on activation of the SMAD pathway, but not on p38 MAPK. Thus, combinatorial signaling by TGF-β1 of myofibroblast differentiation and down-regulation of Cav-1 by SMAD and p38 MAPK pathways, respectively, confer proliferative and apoptosis-resistant properties to myofibroblasts. Selective targeting of this SMAD-independent, p38-MAPK/Cav-1-dependent pathway is likely to be effective in the treatment of pathological conditions characterized by TGF-β signaling and myofibroblast activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4319960PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0116995PLOS

Publication Analysis

Top Keywords

myofibroblast differentiation
12
p38 mapk
12
down-regulation caveolin-1
8
smad signaling
8
properties myofibroblasts
8
smad-independent down-regulation
4
caveolin-1 tgf-β
4
tgf-β effects
4
effects proliferation
4
proliferation survival
4

Similar Publications

Purpose: To develop an in vitro model that mimics aspects of corneal healing in humans for uncovering key mechanisms involved in the mechanisms involved in the healing and scarring processes.

Methods: As part of the healing matrix, TGF-β1-induced and corneal-derived myofibroblasts were cultured in fibrin hydrogels with configurations that recapitulate the healthy (aligned) and wounded (random) microenvironment of the cornea.

Results: Evaluation of cellular alpha smooth muscle actin (α-SMA) and collagen hybridizing peptide (CHP) showed cell and matrix alignment, respectively.

View Article and Find Full Text PDF

Graves' orbitopathy (GO) is characterized by orbital inflammatory infiltration, expansion of orbital tissues due to de novo adipogenesis and over-production of hydrophilic glycosaminoglycans, as well as myofibroblastic differentiation resulting in tissue fibrosis. Thyrotropin receptor antibody (TSH-R-Ab) is the major stimulus, which activates Thyrotropin receptor (TSH-R) / insulin-like growth factor-1 receptor (IGF-1R) and its downstream signalling in orbital fibroblasts (OF). Clinical evaluation of TSH-R-Ab, the specific biomarker of Graves' disease (GD) and the associated orbitopathy, provides important clinical information concerning diagnosis, disease monitoring and prognosis of GO.

View Article and Find Full Text PDF

Circular RNA RORβ regulates TGFβR1 in alcohol-induced fibroblast-to-myofibroblast differentiation.

Sci Rep

September 2025

Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA, 30322, USA.

Alcohol exposure augments the expression and signaling of transforming growth factor-beta (TGFβ), leading to fibroproliferation. We showed that inhibition of TGFβ receptor type 1 (TGFβR1) mitigates the effect of alcohol in the lung. We further demonstrated that alcohol modulates TGFβ signaling, partly through its ability to modify microRNA (miRNA or miR) expressions in the lung.

View Article and Find Full Text PDF

Interpretable machine learning coupled to spatial transcriptomics unveils mechanisms of macrophage-driven fibroblast activation in ischemic cardiomyopathy.

medRxiv

August 2025

Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213.

Myocardial infarction (MI) often leads to ischemic cardiomyopathy, which is characterized by extensive cardiac remodeling and pathological fibrosis accompanied by inflammatory cell accumulation. Although inflammatory responses elicited by cardiac macrophages are instrumental in post-MI cardiac remodeling, macrophage microniche-mediated fibroblast activation in MI are not understood. Analyses of the spatial transcriptomics data of the hearts of patients with ischemic cardiomyopathy and a history of MI using a novel workflow combining Significant Latent Factor Interaction Discovery (SLIDE), which is an interpretable machine learning approach recently developed by us, regulatory network inference, and in-silico perturbations unveiled unique context-specific cellular programs and corresponding transcription factors driving these programs (that would have been missed by traditional analyses) in macrophages, and resting and activated cardiac fibroblasts.

View Article and Find Full Text PDF

Fibrotic lung diseases are associated with significant morbidity and mortality, and few therapies have been FDA-approved for patients with these conditions. Therefore, developing effective anti-fibrotic treatments represents an unmet clinical need. Plasminogen activator inhibitor 1 (PAI-1) is an attractive therapeutic target as its expression is up-regulated in the context of fibrotic lung disease, and a causal role for PAI-1 in lung fibrogenesis has been established in complementary animal models.

View Article and Find Full Text PDF