Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We present a new double-sided, single-chip monolithic integration scheme to integrate the CMOS circuits and MEMS structures by using through-silicon-via (TSV). Neural sensing applications were chosen as the implementation example. The proposed heterogeneous device integrates standard 0.18 μm CMOS technology, TSV and neural probe array into a compact single chip device. The neural probe array on the back-side of the chip is connected to the CMOS circuits on the front-side of the chip by using low-parasitic TSVs through the chip. Successful fabrication results and detailed characterization demonstrate the feasibility and performance of the neural probe array, TSV and readout circuitry. The fabricated device is 5 × 5 mm(2) in area, with 16 channels of 150 μm-in-length neural probe array on the back-side, 200 μm-deep TSV through the chip and CMOS circuits on the front-side. Each channel consists of a 5 × 6 probe array, 3 × 14 TSV array and a differential-difference amplifier (DDA) based analog front-end circuitry with 1.8 V supply, 21.88 μW power consumption, 108 dB CMRR and 2.56 μVrms input referred noise. In-vivo long term implantation demonstrated the feasibility of presented integration scheme after 7 and 58 days of implantation. We expect the conceptual realization can be extended for higher density recording array by using the proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10544-014-9906-9 | DOI Listing |