Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
The fungal plant pathogen Verticillium dahliae is the causal agent of vascular wilt, a disease that can seriously diminish cotton fiber yield. The pathogenicity mechanism and the identity of the genes that interact with cotton during the infection process still remain unclear. In this study, we investigated the low-pathogenic, non-microsclerotium-producing mutant vdpr3 obtained in a previous study from the screening of a T-DNA insertional library of the highly virulent isolate Vd080; the pathogenicity-related gene (VdPR3) in wild-type strain Vd080 was cloned. Knockout mutants (ΔVdPR3) showed lower mycelium growth and obvious reduction in sporulation ability without microsclerotium formation. An evaluation of carbon utilization in mutants and wild-type isolate Vd080 demonstrated that mutants-lacking VdPR3 exhibited decreased cellulase and amylase activities, which was restored in the complementary mutants (ΔVdPR3-C) to levels similar to those of Vd080. ΔVdPR3 postponed infectious events in cotton and showed a significant reduction in pathogenicity. Reintroduction of a functional VdPR3 copy into ΔVdPR3-C restored the ability to infect cotton plants. These results suggest that VdPR3 is a multifunctional gene involved in growth development, extracellular enzyme activity, and virulence of V. dahliae on cotton.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00294-015-0476-z | DOI Listing |