98%
921
2 minutes
20
Bryophytes dominate some ecosystems despite their extraordinary sensitivity to habitat quality. Nevertheless, some species behave differently across various regions. The existence of local adaptations is questioned by a high dispersal ability, which is thought to redistribute genetic variability among populations. Although Sphagnum warnstorfii is an important ecosystem engineer in fen peatlands, the causes of its rather wide niche along the pH/calcium gradient are poorly understood. Here, we studied the genetic variability of its global populations, with a detailed focus on the wide pH/calcium gradient in Central Europe. Principal coordinates analysis of 12 polymorphic microsatellite loci revealed a significant gradient coinciding with water pH, but independent of geography; even samples from the same fens were clearly separated along this gradient. However, most of the genetic variations remained unexplained, possibly because of the introgression from phylogenetically allied species. This explanation is supported by the small heterogeneous cluster of samples that appeared when populations morphologically transitional to S. subnites, S. rubellum, or S. russowii were included into the analysis. Alternatively, this unexplained variation might be attributed to a legacy of glacial refugia with recently dissolved ecological and biogeographic consequences. Isolation by distance appeared at the smallest scale only (up to 43 km). Negative spatial correlations occurred more frequently, mainly at long distances (up to 950 km), implying a genetic similarity among samples which are very distant geographically. Our results confirm the high dispersal ability of peatmosses, but simultaneously suggested that their ability to cope with a high pH/calcium level is at least partially determined genetically, perhaps via specific physiological mechanisms or a hummock-forming ability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4298450 | PMC |
http://dx.doi.org/10.1002/ece3.1351 | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Chinese Academy of Sciences Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China.
Vegetation phenology, i.e., seasonal biological events such as leaf-out and leaf-fall, regulates local climate through biophysical processes like evapotranspiration (ET) and albedo.
View Article and Find Full Text PDFInt J Audiol
September 2025
Department of Otolaryngology-Head & Neck Surgery, University of California San Francisco, San Francisco, California, USA.
Objective: To develop and pilot test a combined-learning intervention for Tanzanian primary healthcare workers on ear and hearing care (EHC), comprising five self-led smartphone-based modules and in-person workshops.
Design: The intervention was piloted with primary healthcare workers in Tanzania. Pre- and post-training surveys assessed knowledge, confidence, and attitudes towards EHC via Likert scales.
PLoS One
September 2025
School of Computer Science and Engineering, Southeast University, China.
Metaheuristic optimization algorithms often face challenges such as complex modeling, limited adaptability, and a tendency to get trapped in local optima when solving complex optimization problems. To enhance algorithm performance, this paper proposes an enhanced Secretary Bird Optimization Algorithm (MESBOA) based on a precise elimination mechanism and boundary control. The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence.
View Article and Find Full Text PDFPLoS One
September 2025
CIRAD, UMR ASTRE, Montpellier, France.
Since the 2013-2014 Ebola virus disease outbreak, Guinea has faced recurrent epidemics of viral hemorrhagic fevers. Although the country has learned from these epidemics by improving its disease surveillance and investigation capacities, local authorities and stakeholders, including community actors, are not sufficiently involved in the disease-emergence response. As a result, measures are not fully understood and have failed to engage local stakeholders.
View Article and Find Full Text PDFJ Vis Exp
August 2025
Institut de recherches cliniques de Montréal (IRCM); Programmes de biologie moléculaire, Université de Montréal; Département de Médecine, Université de Montréal;
Embryonic tissue growth and patterning are largely controlled by signals exchanged locally between cell populations within the tissues themselves. Cytonemes are a type of signaling filopodia first identified in Drosophila that connect and mediate exchange between signal-producing and signal-receiving cells. In the developing Drosophila wing imaginal disc, cytonemes are involved in signal exchange between distinct populations of cells within the disc proper (DP) epithelium, which will form the adult wing, as well as between DP cells and cells in adjacent disc-associated tissues.
View Article and Find Full Text PDF