Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The complete characterization of novel electropolymerizable organometallic complexes is presented. These are newly synthesized cyclometalated complexes of general formula (PPy)M(O ∧ N)(n) (H(PPy) = 2-phenylpyridine, M = Pd(II) or Pt(II), H(O ∧ N)(n) = Schiff base). Polymeric thin films have been obtained from these complexes by electropolymerization of the triphenylamino group grafted onto the H(O ∧ N)(n) ancillary ligand. The redox behavior and the photoconductivity of both of the monomers (PPy)M(O ∧ N)(n) and the electropolymerized species have been investigated. The polymeric films of (PPy)M(O ∧ N)(n) have shown a very significant enhancement of photoconductivity when compared to their monomeric amorphous counterparts. The high stability of the obtained films strongly suggests that electropolymerization of cyclometalated complexes represents a viable deposition technique of quality thin films with improved photoconduction properties, hence opening the door to a new class of materials with suitable properties for optoelectronic applications.

Download full-text PDF

Source
http://dx.doi.org/10.1021/am506984mDOI Listing

Publication Analysis

Top Keywords

thin films
12
ppymo ∧
12
cyclometalated complexes
8
films
5
complexes
5
5
electropolymerized highly
4
highly photoconductive
4
photoconductive thin
4
films cyclopalladated
4

Similar Publications

Wafer-scale integration of monolayer MoS residue-free support layer etching and angular strain suppression.

Nanoscale

September 2025

Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore.

A crack-free and residue-free transfer technique for large-area, atomically-thin 2D transition metal dichalcogenides (TMDCs) such as MoS and WS is critical for their integration into next-generation electronic devices, either as channel materials replacing silicon or as back-end-of-line (BEOL) components in 3D-integrated nano-systems on CMOS platforms. However, cracks are frequently observed during the debonding of TMDCs from their growth substrates, and polymer or metal residues are often left behind after the removal of adhesive support layers wet etching. These issues stem from excessive angular strain accumulated during debonding and the incomplete removal of support layers due to their low solubility.

View Article and Find Full Text PDF

Laser processing in liquids: insights into nanocolloid generation and thin film integration for energy, photonic, and sensing applications.

Beilstein J Nanotechnol

August 2025

Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León. San Nicolás de los Garza, Nuevo León, 66455, México.

Nanoparticles in their pure colloidal form synthesized by laser-assisted processes such as laser ablation/fragmentation/irradiation/melting in liquids have attained much interest from the scientific community because of their specialties like facile synthesis, ultra-high purity, biocompatibility, colloidal stability in addition to other benefits like tunable size and morphology, crystalline phases, new compounds and alloys, and defect engineering. These nanocolloids are useful for fabricating different devices mainly with applications in optoelectronics, catalysis, sensors, photodetectors, surface-enhanced Raman spectroscopy (SERS) substrates, and solar cells. In this review article, we describe different methods of nanocolloidal synthesis using laser-assisted processes and corresponding thin film fabrication methods, particularly those utilized for device fabrication and characterization.

View Article and Find Full Text PDF

In the context of the importance of manganese β-diketonates as precursors for the preparation of manganese oxide thin films and nanostructured materials, we report synthetic protocols and pitfalls encountered in the preparation of a family of Mn(ii) complexes of two fluorinated β-diketonates, 1,1,1-trifluoroacetylacetonato- (tfac) and 1,1,1,5,5,5-hexafluoroacetylacetonato- (hfac). The synthetic conditions and crystal structures of six new complexes are reported, including a coordination polymer {K[Mn(tfac)]}, an unusual trinuclear complex Mn(tfac)(OH), and a series of mononuclear complexes with coordinated solvents tetrahydrofuran, 1,2-dimethoxyethane, water, and acetonitrile. The crystal structures of two known Mn(ii) complexes are also reported for completeness.

View Article and Find Full Text PDF

Extinction in thin polymer films containing nanoparticles is important to photovoltaics, sensors, and interconnects. Extinction measured in 1-millimeter-thin films containing plasmonic nanoparticles increased with nanoparticle density to levels higher than predicted. Yet, enhancement of extinction was not measured in <100-nanometer-thin films containing high-density plasmonic nanoparticles.

View Article and Find Full Text PDF

Multi-orbital hybridization in a one-dimensional monolayer of DPh-BTBT.

Nanoscale

September 2025

Institute of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8573, Japan.

[1]Benzothieno[3,2-][1]benzothiophene (BTBT)-based molecules exhibit remarkably high hole mobility, sparking interest in their charge transport mechanisms. However, for thin films, the theoretically proposed mixed-orbital charge transport (MOCT) mechanism, which involves the hybridization of different frontier orbitals between neighboring molecules in the bulk, remains unexplored both experimentally and theoretically. In this study, we prepared a monolayer of 2,7-diphenyl-BTBT (DPh-BTBT) with a unique one-dimensional structure and investigated its molecular-level structure and electronic state.

View Article and Find Full Text PDF