98%
921
2 minutes
20
The focus of this paper is on the analysis of the structural and electronic order-disorder effects at long, medium and short ranges of titanium dioxide (TiO2) nanoparticles synthesized by the sol-gel process followed by the microwave-assisted solvothermal (MAS) method at low temperatures and short reaction times. X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) spectroscopy, transmission electron microscopy (TEM) and X-ray spectroscopy (EDX) were used to characterize the TiO2 nanoparticles. Optical properties were investigated by ultraviolet-visible (UV-vis) and photoluminescence (PL) measurements performed at room temperature. XRD and Rietveld refinement confirmed the presence of the anatase and brookite phases; nonetheless anatase is the major phase. The X-ray photoelectron spectroscopy (XPS) analysis revealed the presence of only Ti(4+) but the nonstoichiometry revealed that TiO2 NPs contain defects assigned to oxygen vacancies that lead to structural and electronic order-disorder effects observed by band gap narrowing and PL wide band emission. These intermediary energy levels (shallow and deep levels) created within the band gap act as acceptors/donors of electrons and recombination centers. The oxygen vacancies (VO(x), VO˙ and VO˙˙) responsible by degree of structural order-disorder are related to distortions (tilts) on the [TiO6] octahedron and changes in the bond lengths and bond angles between oxygen and titanium atoms that gave rise to new species of cluster makers such as [TiO6]', [TiO5·VO(x)], [TiO5·VO˙] and [TiO5·VO˙˙]. This structural transformation is consistent with a redistribution of electron density from highly ordered [TiO6](x) clusters which form distorted [TiO6]' as well as complex [TiO5·VO(x)], [TiO5·VO˙] and [TiO5·VO˙˙] clusters assigned to oxygen vacancies which were understood as displacements in the oxygen atoms' position in the bond lengths (Ti-O).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4dt03254c | DOI Listing |
J Phys Chem Lett
September 2025
National Laboratory of Solid-State Microstructures, School of Electronic Science and Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China.
Stress engineering is an effective way to tune the performance of semiconductors, which has been verified in the work of inorganic and organic single-crystal semiconductors. However, due to the limitations of the vapor-phase growth preparation conditions, the deposited polycrystalline organic semiconductors are more susceptible to residual stress. Therefore, it is of great research significance to develop a low-cost stress engineering applicable to vapor-deposited semiconductors.
View Article and Find Full Text PDFJ Phys Chem A
September 2025
Department of Chemistry, Tsinghua University, Beijing 100084, China.
A series of Cu-based single-atom catalysts (SACs) with asymmetric coordination were designed to accelerate lithium-sulfur (Li-S) chemistry. The electronegativity contrast from the dopant induces a localized electronic asymmetry that amplifies Jahn-Teller distortion at the Cu center. This distortion profoundly modulates the Cu 3d electronic structure and its interaction with Li-S intermediates.
View Article and Find Full Text PDFMol Divers
September 2025
Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia.
Cyclin-dependent kinase 20 (CDK20), also known as cell cycle-related kinase (CCRK), plays a pivotal role in hepatocellular carcinoma (HCC) progression by regulating β-catenin signaling and promoting uncontrolled proliferation. Despite its emerging significance, selective small-molecule inhibitors of CDK20 remain unexplored. In this study, a known CDK20 inhibitor, ISM042-2-048, was employed as a reference to retrieve structurally similar compounds from the PubChem database using an 85% similarity threshold.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2025
State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China.
This study develops an integrated X-ray absorption spectroscopy (XAS) photoemission electron microscopy (PEEM) platform on beamline BL09U at the Shanghai Synchrotron Radiation Facility (SSRF), enabling nanoscale characterization of complex materials through energy-resolved imaging and local-area XAS. By using the wide range of energy tunability, full access to different polarizations and PEEM's surface sensitivity, we have established a gap-monochromator control system under the EPICS framework to synchronize the elliptically polarized undulator (EPU) gap and monochromator energy dynamically, optimizing photon flux stability for absorption fine structure analysis. Combining X-ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) with PEEM and local-area XAS, this platform achieves concurrent mapping of electronic structures and magnetic domains in ferromagnetic nano-patterns, as demonstrated through our studies of NiFe Permalloy using this system.
View Article and Find Full Text PDFJ Fluoresc
September 2025
Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, 81441, Ha'il, Saudi Arabia.
This review delivers a focused and critical evaluation of recent progress in the green synthesis of carbon quantum dots (CQDs), with particular attention to state-of-the-art approaches utilizing renewable biomass as precursors. The main objective is to systematically examine innovative, environmentally friendly methods and clarify their direct influence on the core properties and photocatalytic performance of CQDs. The novelty of this review stems from its comprehensive comparison of green synthetic pathways, revealing how specific processes determine key structural, optical, and electronic attributes of the resulting CQDs.
View Article and Find Full Text PDF