KMUP-1 Promotes Osteoblast Differentiation Through cAMP and cGMP Pathways and Signaling of BMP-2/Smad1/5/8 and Wnt/β-Catenin.

J Cell Physiol

Department and Graduate Institute of Pharmacology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.

Published: September 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Phosphodiesterase (PDE) inhibitors have been suggested as a possible candidate for the treatment of osteopenia, including osteoporosis. KMUP-1 is a novel xanthine derivative with inhibitory activities on the PDE 3, 4, and 5 iso-enzymes to suppress the degradation of cAMP and cGMP. This study aimed to investigate the effect of KMUP-1 on osteoblast differentiation and the underlying cellular and molecular mechanisms. Primary osteoblasts and osteoblastic MC3T3-E1 cells were examined. KMUP-1 enhanced alkaline phosphatase (ALP) activity and mineralization compared to untreated controls in primary osteoblasts and MC3T3-E1 cells. KMUP-1 also increased the mRNA expression of the osteoblastic differentiation markers, including collagen type 1a, ALP, osteocalcin, osteoprotegerin, BMP-2, and Runx2, a key transcription regulator for osteoblastic differentiation. The osteogenic effect of KMUP-1 was abolished by BMP signaling inhibitor, noggin. Furthermore, we found that KMUP-1 upregulated Smad1/5/8 phosphorylations with subsequent BRE-Luc activation confirmed by transient transfection assay. In addition, KMUP-1 inactivated glycogen synthase kinase-3β (GSK-3β), with associated nuclear translocation of β-catenin. Co-treatment with H89 and KT5823, cAMP and cGMP pathway inhibitors, respectively, reversed the KMUP-1-induced activations of Smad1/5/8, β-catenin, and Runx2. The findings demonstrate for the first time that KMUP-1 can promote osteoblast maturation and differentiation in vitro via BMP-2/Smad1/5/8 and Wnt/β-catenin pathways. These effects are mediated, in part, by the cAMP and cGMP signaling. Thus, KMUP-1 may be a novel osteoblast activator and a potential new therapy for osteoporosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.24904DOI Listing

Publication Analysis

Top Keywords

camp cgmp
16
kmup-1
10
osteoblast differentiation
8
bmp-2/smad1/5/8 wnt/β-catenin
8
kmup-1 novel
8
primary osteoblasts
8
mc3t3-e1 cells
8
osteoblastic differentiation
8
differentiation
5
kmup-1 promotes
4

Similar Publications

Purpose: To evaluate the impact of MRP inhibition by MK571 on prostate hypercontractility in diet-induced obesity, based on the hypothesis that this intervention enhances intracellular cAMP and cGMP signaling.

Methods: Adult C57BL/6 mice were divided into three groups: (i) lean, (ii) obese, and (iii) obese + MK571 (5 mg/kg/day, 14 days). The prostate was isolated for immunohistochemistry, biochemistry and functional assays.

View Article and Find Full Text PDF

This study investigated the effects of soy isoflavone yeast fermented extract (soyF) and soy isoflavone yeast unfermented extract (soyN) on rat ileal smooth muscle contraction. SoyF and soyN inhibited carbachol (CCh)- or KCl-induced contraction in a concentration-dependent manner; however, these effects were stronger for CCh-induced contraction than that for KCl, and the relaxation effect was stronger for soyF than for soyN. SoyF-induced relaxation was attenuated by 4-aminopyridine (4-AP), a Kv channel inhibitor, and iberiotoxin (IbTX), a calcium-activated potassium channel (BK channel) inhibitor.

View Article and Find Full Text PDF

Cyclic nucleotides are critical regulators of adaptive thermogenesis and adipogenesis, with their intracellular levels finely tuned by phosphodiesterases. Phosphodiesterase type 5 (PDE5A) modulates cyclic guanosine monophosphate (cGMP) levels in adipocytes. While PDE5A inhibition has shown promise in patients with diabetes, its role in metabolism remains unclear.

View Article and Find Full Text PDF

Colonisation of mosquitos by the malarial parasite is critically reliant on the invasive ookinete stage. Ookinete invasion of mosquito is coordinated by the apical complex, a specialised parasite structure containing components for secretion, attachment and penetration. While studies have investigated cytoskeletal and secretory elements, it is currently unknown if signalling modules are present or functional at the apical complex.

View Article and Find Full Text PDF