A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Imaging and spectroscopic comparison of multi-step methods to form DNA arrays based on the biotin-streptavidin system. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Three multi-step multi-molecular approaches using the biotin-streptavidin system to contact-print DNA arrays on SiO2 surfaces modified with (3-glycidoxypropyl)trimethoxysilane are examined after each deposition/reaction step by atomic force microscopy, X-ray photoelectron spectroscopy and time of flight secondary ion mass spectrometry. Surface modification involves the spotting of preformed conjugates of biotinylated oligonucleotides with streptavidin onto surfaces coated with biotinylated bovine serum albumin b-BSA (approach I) or the spotting of biotinylated oligonucleotides onto a streptavidin coating, the latter prepared through a reaction with immobilized b-BSA (approach II) or direct adsorption (approach III). AFM micrographs, quantified by autocorrelation and height histogram parameters (e.g. roughness), reveal uniform coverage after each modification step with distinct nanostructures after the reaction of biotinylated BSA with streptavidin or of a streptavidin conjugate with biotinylated oligonucleotides. XPS relates the immobilization of biomolecules with covalent binding to the epoxy-silanized surface. Protein coverage, estimated from photoelectron attenuation, shows that regarding streptavidin the highest and the lowest immobilization efficiency is achieved by following approaches I and III, respectively, as confirmed by TOF-SIMS microanalysis. The size of the DNA spot reflects the contact radius of the printed droplet and increases with protein coverage (and roughness) prior to the spotting, as epoxy-silanized surfaces are hardly hydrophilic. Representative TOF-SIMS images show sub-millimeter spots: uniform for approach I, doughnut-like (with a small non-zero minimum) for approach II, both with coffee-rings or peak-shaped for approach III. Spot features, originating from pinned contact lines and DNA surface binding and revealed by complementary molecular distributions (all material, DNA, streptavidin, BSA, epoxy, SiO2), indicate two modes of droplet evaporation depending on the details of each applied approach.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c4an00929kDOI Listing

Publication Analysis

Top Keywords

biotinylated oligonucleotides
12
dna arrays
8
biotin-streptavidin system
8
oligonucleotides streptavidin
8
b-bsa approach
8
approach iii
8
protein coverage
8
approach
7
streptavidin
6
dna
5

Similar Publications