Photoisomerization of silyl-substituted cyclobutadiene induced by σ → π* excitation: a computational study.

J Phys Chem A

Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of the Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Published: January 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Photoinduced chemical processes upon Franck-Condon (FC) excitation in tetrakis(trimethylsilyl)-cyclobutadiene (TMS-CBD) have been investigated through the exploration of potential energy surface crossings among several low-lying excited states using the complete active space self-consistent field (CASSCF) method. Vertical excitation energies are also computed with the equation-of-motion coupled-cluster model with single and double excitations (EOM-CCSD) as well as the multireference Møller-Plesset (MRMP) methods. Upon finding an excellent coincidence between the computational results and experimental observations, it is suggested that the Franck-Condon excited state does not correspond to the first π-π* single excitation state (S1, 1(1)B1 state in terms of D2 symmetry), but to the second (1)B1 state (S3), which is characterized as a σ-π* single excitation state. Starting from the Franck-Condon region, a series of conical intersections (CIs) are located along one isomerization channel and one dissociation channel. Through the isomerization channel, TMS-CBD is transformed to tetrakis(trimethylsilyl)-tetrahedrane (TMS-THD), and this isomerization process could take place by passing through a "tetra form" conical intersection. On the other hand, the dissociation channel yielding two bis(trimethylsilyl)-acetylene (TMS-Ac) molecules through further stretching of the longer C-C bonds might be more competitive than the isomerization channel after excitation into S3 state. This mechanistic picture is in good agreement with recently reported experimental observations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp503220qDOI Listing

Publication Analysis

Top Keywords

excitation state
12
isomerization channel
12
experimental observations
8
single excitation
8
dissociation channel
8
excitation
6
state
6
channel
5
photoisomerization silyl-substituted
4
silyl-substituted cyclobutadiene
4

Similar Publications

The coordination chemistry of the planar, doubly π-extended bipyridine analog, 6,6',7,7'-biphenanthridine (p-biphe), is presented. The phenanthridine units in p-biphe are fused together at the 6- and 7- positions, and the resulting rigid ligand is compared with the more flexible parent "biphe" fused only at the 6-positions. p-Biphe is intensely fluorescent in solution with a much higher quantum yield, but, unlike biphe, at 77 K the fluorescence is not accompanied by any significant phosphorescence.

View Article and Find Full Text PDF

Photosensitization has emerged as a versatile tool to facilitate access to excited states under mild conditions, allowing for efficient and selective photochemical transformations. Herein, we report a very simple molecule, coronene bisimide (CBI), as a potent visible-light photosensitizer featuring a high extinction coefficient with a broadband absorption spanning from ultraviolet to green region of the visible spectrum, along with a long-lived triplet state generated via efficient intersystem crossing (ISC). Utilizing the triplet-triplet energy transfer (TTEnT) strategy, CBI catalyzes diverse reactions under green light irradiation.

View Article and Find Full Text PDF

Exhaled breath analysis offers noninvasive, early lung cancer detection via volatile organic compound (VOC) biomarkers, surpassing blood-based methods. Surface-enhanced Raman spectroscopy (SERS) is ideal for this purpose, combining molecular fingerprint specificity with single-molecule sensitivity. However, conventional SERS substrates face a fundamental limitation: while porous materials such as metal-organic frameworks effectively adsorb VOCs through their subnanometer pores (0.

View Article and Find Full Text PDF

Ionization of alkanes to form radical cations activates their otherwise unreactive C-H bonds, facilitating important chemical processes such as hydrocarbon cracking. This work investigates the radical cation dissociation dynamics of hexane (CH) structural isomers by using femtosecond time-resolved mass spectrometry and quantum chemical calculations. All five isomers exhibit competition between the yields of fragment ions arising from direct C-C bond cleavage or dissociative rearrangement with hydrogen migration on dynamical time scales of ∼50-300 fs, suggesting that hydrogen migration in the metastable cations operates on such short time scales.

View Article and Find Full Text PDF

Background: In the contemporary era of rapid digital advancement, information security is closely associated with our daily life. From personal information to state secrets, all domains are intricately linked with information. Consequently, the significance of information security has garnered growing attention from an ever-increasing number of individuals.

View Article and Find Full Text PDF