Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Photoinduced chemical processes upon Franck-Condon (FC) excitation in tetrakis(trimethylsilyl)-cyclobutadiene (TMS-CBD) have been investigated through the exploration of potential energy surface crossings among several low-lying excited states using the complete active space self-consistent field (CASSCF) method. Vertical excitation energies are also computed with the equation-of-motion coupled-cluster model with single and double excitations (EOM-CCSD) as well as the multireference Møller-Plesset (MRMP) methods. Upon finding an excellent coincidence between the computational results and experimental observations, it is suggested that the Franck-Condon excited state does not correspond to the first π-π* single excitation state (S1, 1(1)B1 state in terms of D2 symmetry), but to the second (1)B1 state (S3), which is characterized as a σ-π* single excitation state. Starting from the Franck-Condon region, a series of conical intersections (CIs) are located along one isomerization channel and one dissociation channel. Through the isomerization channel, TMS-CBD is transformed to tetrakis(trimethylsilyl)-tetrahedrane (TMS-THD), and this isomerization process could take place by passing through a "tetra form" conical intersection. On the other hand, the dissociation channel yielding two bis(trimethylsilyl)-acetylene (TMS-Ac) molecules through further stretching of the longer C-C bonds might be more competitive than the isomerization channel after excitation into S3 state. This mechanistic picture is in good agreement with recently reported experimental observations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp503220q | DOI Listing |