A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Prediction of hypertension based on the genetic analysis of longitudinal phenotypes: a comparison of different modeling approaches for the binary trait of hypertension. | LitMetric

Prediction of hypertension based on the genetic analysis of longitudinal phenotypes: a comparison of different modeling approaches for the binary trait of hypertension.

BMC Proc

Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond Street, London, Ontario, Canada N6A5C1.

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For the analysis of the longitudinal hypertension family data, we focused on modeling binary traits of hypertension measured repeatedly over time. Our primary objective is to examine predictive abilities of longitudinal models for genetic associations. We first identified single-nucleotide polymorphisms (SNPs) associated with any occurrence of hypertension over the study period to set up covariates for the longitudinal analysis. Then, we proceeded to the longitudinal analysis of the repeated measures of binary hypertension with covariates including SNPs by accounting for correlations arising from repeated outcomes and among family members. We examined two popular models for longitudinal binary outcomes: (a) a marginal model based on the generalized estimating equations, and (b) a conditional model based on the logistic random effect model. The effects of risk factors associated with repeated hypertensions were compared for these two models and their prediction abilities were assessed with and without genetic information. Based on both approaches, we found a significant interaction effect between age and gender where males were at higher risk of hypertension before age 35 years, but after age 35 years, women were at higher risk. Moreover, the SNPs were significantly associated with hypertension after adjusting for age, gender, and smoking status. The SNPs contributed more to predict hypertension in the marginal model than in the conditional model. There was substantial correlation among repeated measures of hypertension, implying that hypertension was considerably correlated with previous experience of hypertension. The conditional model performed better for predicting the future hypertension status of individuals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4143688PMC
http://dx.doi.org/10.1186/1753-6561-8-S1-S78DOI Listing

Publication Analysis

Top Keywords

hypertension
12
conditional model
12
analysis longitudinal
8
snps associated
8
longitudinal analysis
8
repeated measures
8
marginal model
8
model based
8
age gender
8
higher risk
8

Similar Publications