Effects of synthetic biomacromolecule addition on the flow behavior of concentrated mesenchymal cell suspensions.

Biomacromolecules

Tissue Engineering and Microfluidics Laboratory, Australian Institute for Bioengineering and Nanotechology, ‡School of Biomedical Science, §School of Chemical Engineering, The University of Queensland, St. Lucia, Queensland 4072, Australia.

Published: January 2015


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In the fields of tissue engineering and regenerative medicine, many researchers and companies alike are investigating the utility of concentrated mesenchymal stem cell suspensions as therapeutic injectables, with the hope of regenerating the damaged tissue site. These cells are seldom used alone, being instead combined with synthetic biomacromolecules, such as branched poly(ethylene glycol) (PEG) polymers, in order to form cross-linked hydrogels postinjection. In this article, we present the results of a detailed experimental and analytical investigation into the impacts of a range of eight-arm PEG polymers, each presenting functional end groups, on the rheological properties of concentrated living cells of mesenchymal origin. Using two-photon confocal microscopy, we confirmed that the aggregates formed by the cells are fractal structures, the dimension of which changed with PEG polymer type addition. From these results and the observed substantial variation in rheological footprint with increasing volume fraction and different PEG polymer type, we propose a number of mechanisms driving such structural changes. Lastly, we derived a modified Krieger-Dougherty model to produce a master curve for the relative viscosity as a function of volume fraction over the range of conditions investigated (including shear stress and PEG polymer type), from which we extract the adhesion force between individual cells within these concentrated suspensions. The outcomes of this study provide new insights into the complex interactions occurring in concentrated mesenchymal cell suspensions when combined with synthetic biomacromolecules commonly used as precursors in tissue engineering hydrogels, highlighting their substantial impacts on the resultant rheological footprint.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bm501481yDOI Listing

Publication Analysis

Top Keywords

concentrated mesenchymal
12
cell suspensions
12
peg polymer
12
polymer type
12
mesenchymal cell
8
tissue engineering
8
combined synthetic
8
synthetic biomacromolecules
8
peg polymers
8
rheological footprint
8

Similar Publications

Lineage specification requires accurate interpretation of multiple signaling cues. However, how combinatorial signaling histories influence fate outcomes remains unclear. We combined single-cell transcriptomics, live-cell imaging, and mathematical modeling to explore how activin and bone morphogenetic protein 4 (BMP4) guide fate specification during human gastrulation.

View Article and Find Full Text PDF

Jiawei yanghe decoction alleviates osteoporotic osteoarthritis by promoting MSC osteogenic differentiation and homing via ITGB6/TGF-β/CXCR4 pathway.

Phytomedicine

August 2025

Zhejiang Provincial Chinese Medicine Hospital (First affiliated hospital of Zhejiang Chinese Medical University), Zhejiang Chinese Medical University, Hangzhou City, Zhejiang Province, 310053, China; Department of Orthopedics, Affiliated Hospital of Jiangxi University of Chinese Medicine, Jiangxi Un

Background: Osteoporotic osteoarthritis (OPOA), a distinct subtype of osteoarthritis (OA), has imposed a significant health and economic burden worldwide. However, mechanistic studies and therapeutic strategies for this disease remain in the exploratory stage.

Purpose: This study aimed to investigate the specific molecular mechanisms by which osteoporosis (OP) exacerbates OA progression through accelerated subchondral bone (SB) sclerosis and the potential of Jiawei Yanghe Decoction (JWYHD) in treating OPOA.

View Article and Find Full Text PDF

Tumor necrosis factor-alpha (TNF-α) is a cytokine involved in the immune-inflammatory response. It can induce an odontoblastic phenotype and enhance biomineralization in dental pulp mesenchymal stem cells but does not have the same effect on osteoblasts. The reasons for this differential response, despite the shared lineage of these cell types, are not yet clear.

View Article and Find Full Text PDF

Background: Voghera pepper (VP) extracts were demonstrated to have anti-oxidant ability in several cell types.

Purpose: This study aimed to assess whether VP-extracts could lower oxidative stress and modulate thyroid cancer (TC) cells behavior .

Methods: Extracts were analyzed using the LC-DAD-MS system.

View Article and Find Full Text PDF

In the current in vitro experiment, we fabricated and characterized placenta/platelet-rich plasma (PL/Pt) composite scaffolds and evaluated their effect on differentiating adipose stem cells (ASCs) into insulin-producing cells (IPCs) in vitro. The human placenta (PL) was decellularized (dPL), characterized, and digested in pepsin. PRP was extracted using a two-step centrifugation process and then freeze-dried.

View Article and Find Full Text PDF