98%
921
2 minutes
20
Sampling strategy is important for unbiased analysis of the characteristics of microbial communities in the environment. During field work it is not always possible to analyze fresh samples immediately or store them frozen. Therefore, the effect of short-term storage temperature was investigated on the abundance and composition of bacterial, archaeal and denitrifying communities in environmental samples from two different sampling sites. Oxic forest soil and anoxic pond sediment were investigated by measuring microbial abundance (DNA) and transcriptional activity (RNA). Prior to investigating the effect of storage temperature, samples were immediately analyzed, in order to represent the original situation in the habitat. The effect of storage temperature was then determined after 11 days at different low temperatures (room temperature, 4 °C, −22 °C and −80 °C). Community profiling using terminal restriction fragment length polymorphism (T-RFLP) showed no significant differences between the immediately analyzed reference sample and the samples stored at different incubation temperatures, both for DNA and RNA extracts. The abundance of microbial communities was determined using quantitative PCR and it also revealed a stable community size at all temperatures tested. By contrast, incubation at an elevated temperature (37 °C) resulted in changed bacterial community composition. In conclusion, short-term storage, even at room temperature, did not affect microbial community composition, abundance and transcriptional activity in aerated forest soil and anoxic pond sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.syapm.2014.10.007 | DOI Listing |
J Phys Chem A
September 2025
Department of Basic Science, School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902, Japan.
Desorption processes of HO molecules from AlO(HO) ( = 3, 5, 7) and AlO(HO)H ( = 4, 6, 8) clusters were investigated using gas-phase thermal desorption spectrometry to evaluate the HO storage capacity and mechanisms of aluminum oxide clusters. The clusters stored approximately 10 HO molecules at ∼300 K, depending on the size (), and released them upon heating. Even after heating to ∼1000 K, 2-4 HO molecules remained bound.
View Article and Find Full Text PDFEur J Clin Pharmacol
September 2025
Department of Hospital Pharmacy, Meander Medical Centre, Amersfoort, the Netherlands.
Purpose: This study was designed to analyse the influence of temperature, pH and storage time on unbound fractions of PHT and VPA.
Methods: The influence of ultrafiltration (UF) temperature on measured unbound fractions of PHT and VPA in spiked samples was evaluated in a single laboratory experiment and in data from a national external quality control (EQC) database. The influence of pH adjustment with phosphate buffered saline (PBS) on measured unbound fractions of PHT and VPA was investigated in patient samples.
Langmuir
September 2025
College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, PR China.
Hard carbon (HC) has emerged as a promising anode material for sodium-ion batteries (SIBs) owing to its superior sodium storage performance. However, the high cost of conventional HC precursors remains a critical challenge. To address this, coal─a low-cost, carbon-rich precursor─has been explored for HC synthesis.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Huazhong University of Science and Technology, Wuhan, 430074, China.
Low-temperature rechargeable batteries face great challenges due to the sluggish reaction kinetics. Redox covalent organic frameworks (COFs) with porous structures provide a viable solution to accelerate the ionic diffusion and reaction kinetics at low temperatures. However, the applications of COFs in low-temperature batteries are still at their infancy stage.
View Article and Find Full Text PDFSmall Methods
September 2025
Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics, Science and Technology, Hebei University, Baoding, 071002, China.
As a new generation of high-energy-density energy storage system, solid-state aluminum-ion batteries have attracted much attention. Nowadays polyethylene oxide (PEO)-based electrolytes have been initially applied to Lithium-ion batteries due to their flexible processing and good interfacial compatibility, their application in aluminum-ion batteries still faces problems. To overcome the limitations in aluminum-ion batteries-specifically, strong Al coordination suppressing ion dissociation, high room-temperature crystallinity, and inadequate mechanical strength-this study develops a blended polymer electrolyte (BPE) of polypropylene carbonate (PPC) and PEO.
View Article and Find Full Text PDF