A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Efficient coupling of nanosecond laser pulses with the cluster medium: Generation of hydrogen-like [C](5+) atomic ions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rationale: Clusters exhibit diverse photochemical behavior as a function of laser parameters, i.e. wavelength, pulse duration and intensity. One such aspect of cluster photochemistry is the generation of energetic multiply charged atomic ions, upon efficient interaction of clusters with intense laser pulses. In the present work, mass spectrometric investigations have been carried out on clusters of tetrahydrofuran (THF, C4 H8 O) - a saturated cyclic ether - subjected to nanosecond laser pulse (spanning from UV to IR wavelength range) with the aim of shedding light on the complex mechanism of laser-cluster interactions, which is still ambiguous.

Methods: THF clusters, generated via supersonic expansion of room-temperature THF vapours seeded in argon, were subjected to gigawatt intensity laser pulses (355, 532 and 1064 nm) obtained from a nanosecond Nd:YAG laser. The ions generated upon laser-cluster interaction were characterized using a time-of-flight mass spectrometer.

Results: At 355 nm, THF clusters exhibit the usual multiphoton dissociation/ionization behavior while, at 532 nm, observation of multiply charged atomic ions of carbon (up to [C](4+) ) and oxygen (up to [O](3+) ) was ascribed to Coulomb explosion of THF clusters. For studies carried out at 1064 nm, multiply charged atomic ions of carbon up to [C](5+) having an ionization energy of ~392 eV were observed, at a laser intensity of 10(10) W/cm(2) .

Conclusions: The observation of [C](5+) atomic ions signifies efficient coupling of the laser energy with the cluster medium, using a nanosecond laser pulse. The results have been rationalized on the basis of a three-stage cluster ionization mechanism, suggesting the crucial role of the threshold laser intensity for initiating ionization within the cluster and generation of optimum charge centers for efficient extraction of energy from the laser pulse.

Download full-text PDF

Source
http://dx.doi.org/10.1002/rcm.7085DOI Listing

Publication Analysis

Top Keywords

atomic ions
20
nanosecond laser
12
laser pulses
12
multiply charged
12
charged atomic
12
laser pulse
12
thf clusters
12
laser
11
efficient coupling
8
cluster medium
8

Similar Publications