Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Benefiting from its effectiveness in subspace segmentation, low-rank representation (LRR) and its variations have many applications in computer vision and pattern recognition, such as motion segmentation, image segmentation, saliency detection, and semisupervised learning. It is known that the standard LRR can only work well under the assumption that all the subspaces are independent. However, this assumption cannot be guaranteed in real-world problems. This paper addresses this problem and provides an extension of LRR, named structure-constrained LRR (SC-LRR), to analyze the structure of multiple disjoint subspaces, which is more general for real vision data. We prove that the relationship of multiple linear disjoint subspaces can be exactly revealed by SC-LRR, with a predefined weight matrix. As a nontrivial byproduct, we also illustrate that SC-LRR can be applied for semisupervised learning. The experimental results on different types of vision problems demonstrate the effectiveness of our proposed method.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TNNLS.2014.2306063 | DOI Listing |