98%
921
2 minutes
20
Friction is one of the main sources of dissipation at liquid water/solid interfaces. Despite recent progress, a detailed understanding of water/solid friction in connection with the structure and energetics of the solid surface is lacking. Here, we show for the first time that ab initio molecular dynamics can be used to unravel the connection between the structure of nanoscale water and friction for liquid water in contact with graphene and with hexagonal boron nitride. We find that although the interface presents a very similar structure between the two sheets, the friction coefficient on boron nitride is ≈ 3 times larger than that on graphene. This comes about because of the greater corrugation of the energy landscape on boron nitride arising from specific electronic structure effects. We discuss how a subtle dependence of the friction on the atomistic details of a surface, which is not related to its wetting properties, may have a significant impact on the transport of water at the nanoscale, with implications for the development of membranes for desalination and for osmotic power harvesting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl502837d | DOI Listing |
Int J Biol Macromol
September 2025
Department of Design and Merchandising, College of Health and Human Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
Development on sustainable and inexpensive polymer fibers with high mechanical and water resistance properties has garnered significant attention in infrastructure application. Herein, lignin nanoparticles (LNP) were used as a modifier, boron nitride nanosheets (BNNS)@hyperbranched polylysine (HBPL) obtained were regarded as the cooperative modifier, and then polyvinyl alcohol (PVA)/LNP/BNNS@HBPL composite fibers were fabricated successfully by wet and dry spinning. Vast free hydrophilic hydroxyl groups in PVA decreased due to hydrogen bonding interactions among LNP, BNNS@HBPL, and PVA, thereby attenuating intramolecular and intermolecular hydrogen bonding within PVA.
View Article and Find Full Text PDFNat Protoc
September 2025
Department of Physics, Technical University of Denmark, Kongens Lyngby, Denmark.
Scanning probe microscopy (SPM) is a powerful technique for mapping nanoscale surface properties through tip-sample interactions. Thermal scanning-probe lithography (tSPL) is an advanced SPM variant that uses a silicon tip on a heated cantilever to sculpt and measure the topography of polymer films with nanometer precision. The surfaces produced by tSPL-smooth topographic landscapes-allow mathematically defined contours to be fabricated on the nanoscale, enabling sophisticated functionalities for photonic, electronic, chemical and biological technologies.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Engineering Ceramic Center, Korea Institute of Ceramic Engineering & Technology (KICET), Icheon 17303, Republic of Korea.
With the rapid advancement of space technologies, ensuring the reliable performance of electronic systems in extreme space environments has become increasingly critical. However, conventional polymeric materials used in electronic device packaging suffer from insufficient neutron shielding capability and poor thermal stability, requiring improved effectiveness in protecting sensitive components from high-energy radiation and drastic temperature fluctuations. In this study, we report a novel multilayered composite consisting of boron nitride microbridle (BNMR) and epoxy resin.
View Article and Find Full Text PDFACS Nano
September 2025
Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan.
This study presents the experimental demonstration of metallic NbS-based one-dimensional van der Waals heterostructures using a modified NaCl-assisted chemical vapor deposition strategy. By employing a ″remote salt″ strategy, we realized precise control of the NaCl supply, enabling the growth of high-quality coaxial NbS nanotubes on single-walled carbon nanotube-boron nitride nanotube (SWCNT-BNNT) templates. Using this remote salt strategy, the morphologies of as-synthesized NbS could be tuned from 1D nanotubes to suspended 2D flakes.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Physics, The Ohio State University, Columbus, Ohio 43210, United States.
Here, we present an all-electrical readout mechanism for quasi-0D quantum states (0D-QS), such as point defects, adatoms, and molecules, that is modular and general, providing an approach that is amenable to scaling and integration with other solid-state quantum technologies. Our approach relies on the creation of high-quality tunnel junctions via the mechanical exfoliation and stacking of multilayer graphene (MLG) and hexagonal boron nitride (hBN) to encapsulate the target system in an MLG/hBN/0D-QS/hBN/MLG heterostructure. This structure allows for all-electronic spectroscopy and readout of candidate systems through a combination of coulomb and spin-blockade.
View Article and Find Full Text PDF