Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
We investigated the surfaces of magnetoresistive manganites, La(1-x)Ca(x)MnO3 and La(2-2x)Sr(1+2x)Mn2O7, using a combination of ultrahigh vacuum conductive, electrostatic and magnetic force microscopy methods. Scanning as-grown film with a metal tip, even with zero applied bias, was found to modify the surface electronic properties such that in subsequent scans, the conductivity is reduced below the noise level of conductive probe microscopy. Scanned areas also reveal a reduced contact potential difference relative to the pristine surface by ∼0.3 eV. We propose that contact-pressure of the tip modifies the electrochemical potential of oxygen vacancies via the Vegard effect, causing vacancy motion and concomitant changes of the electronic properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/0957-4484/25/47/475302 | DOI Listing |