98%
921
2 minutes
20
Rationale: Granulocyte macrophage colony-stimulating factor (GM-CSF, Csf2) is a growth factor for myeloid-lineage cells that has been implicated in the pathogenesis of atherosclerosis and other chronic inflammatory diseases. However, the role of GM-CSF in advanced atherosclerotic plaque progression, the process that gives rise to clinically dangerous plaques, is unknown.
Objective: To understand the role of GM-CSF in advanced atherosclerotic plaque progression.
Methods And Results: Ldlr(-/-) mice and Csf2(-/-)Ldlr(-/-) mice were fed a Western-type diet for 12 weeks, and then parameters of advanced plaque progression in the aortic root were quantified. Lesions from the GM-CSF-deficient mice showed a substantial decrease in 2 key hallmarks of advanced atherosclerosis, lesional macrophage apoptosis and plaque necrosis, which indicates that GM-CSF promotes plaque progression. Based on a combination of in vitro and in vivo studies, we show that the mechanism involves GM-CSF-mediated production of interleukin-23, which increases apoptosis susceptibility in macrophages by promoting proteasomal degradation of the cell survival protein Bcl-2 (B-cell lymphoma 2) and by increasing oxidative stress.
Conclusions: In low-density lipoprotein-driven atherosclerosis in mice, GM-CSF promotes advanced plaque progression by increasing macrophage apoptosis susceptibility. This action of GM-CSF is mediated by its interleukin-23-inducing activity rather than its role as a growth factor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4297527 | PMC |
http://dx.doi.org/10.1161/CIRCRESAHA.116.304794 | DOI Listing |
Nat Commun
September 2025
Institute of Computational Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany.
Atherosclerosis, a major cause of cardiovascular diseases, is characterized by the buildup of lipids and chronic inflammation in the arteries, leading to plaque formation and potential rupture. Despite recent advances in single-cell transcriptomics (scRNA-seq), the underlying immune mechanisms and transformations in structural cells driving plaque progression remain incompletely defined. Existing datasets often lack comprehensive coverage and consistent annotations, limiting the utility of downstream analyses.
View Article and Find Full Text PDFInt Heart J
September 2025
Department of Cardiovascular Medicine, Tokushima University Graduate School of Biomedical Sciences.
The pharmacological blockade of mineralocorticoid receptors (MR) is a potential therapeutic approach to reduce cardiovascular complications. Recent studies suggest that MR blockers affect several extrarenal tissues, including vascular function. We investigated the effects of a novel non-steroidal selective MR blocker, esaxerenone, on vascular function and atherogenesis.
View Article and Find Full Text PDFPharmacol Res
September 2025
Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy. Electronic address:
The valine catabolite 3-hydroxyisobutyrate (3-HIB) is suggested to mediate the uptake of extracellular fatty acids into the cells, thus regulating intracellular lipid metabolism, although the direct mechanism remains unclear. In this study, we assessed the effects of long-term 3-HIB treatment on the development and progression of complex atherosclerotic lesions, lipid metabolism and liver injury in vivo in ApoE-/- mouse model fed Western Diet (WD). Results show that 3-HIB treatment is associated with a significant reduction in weight and serum lipid content, reduced aortic mean plaque area and improvement of liver functions.
View Article and Find Full Text PDFArch Med Res
September 2025
Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Background: Atherosclerosis, a leading cause of cardiovascular disease (CVD) mortality worldwide, is characterized by dysregulated lipid metabolism and unresolved inflammation. Macrophage-derived foam cell formation and apoptosis contribute to plaque formation and vulnerability. Elevated serum galectin-3 (Gal-3) levels are associated with increased CVD risk, and Gal-3 in plaques is strongly associated with macrophages.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
September 2025
School of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519000, China.
Atherosclerosis remains a leading cause of cardiovascular disease and mortality worldwide, despite advancements in statin therapies. Here, we aimed to identify potential anti-atherosclerosis drugs by an integrated approach combining network medicine-based prediction with empirical validation. Among the top drugs predicted by the preferred algorithm, mesalazine─a drug traditionally used to treat inflammatory bowel disease, was selected for in vivo validation in ApoE mouse model of atherosclerosis.
View Article and Find Full Text PDF