A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

[Impacts of land-use types on soil C mineralization and temperature sensitivity of forests in Qianyanzhou, Jiangxi Province, China]. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Decomposition of soil organic matter plays an important role in the regulation of carbon (C) cycles at ecosystem or regional scales, and is closely related to temperature, moisture, and land-use types. The influences of soil temperature, moisture, and land-use types on soil C mineralization in Citrus reticulata and Pinus elliottii forests were investigated at the Qianyanzhou Ecological Experiment Station, Chinese Academy of Sciences, by conducting incubation experiments at 5-level temperatures (5, 10, 15, 20 and 25 degrees C) and 3-level moistures (30%, 60% and 90% saturated soil moisture, SSM). The results showed that soil temperature, moisture, and land-use types had significant effects on soil C mineralization and they had significant interaction effects. Soil C mineralization was positively correlated with incubation temperature in the two forests, and the maximum of soil C mineralization was in the 60% SSM treatment. The accumulation of soil C mineralization was higher in the C. reticulata forest than in the P. elliottii forest under the same temperature and moisture conditions. The temperature sensitivity (Q10) of soil C mineralization was influenced by land-use type and soil moisture. Q10 increased with the increasing soil moisture in both C. reticulata and P. elliottii forests at incubation 7 and 42 d. Q10 in the C. reticulata forest was higher than in the P. elliottii forest in the same moisture level, and the deviation increased with the increasing soil moisture. The model including temperature and moisture could depict the response of soil C mineralization to temperature and moisture. Temperature and moisture together explained 79.9% -91.9% of the variation in soil C mineralization.

Download full-text PDF

Source

Publication Analysis

Top Keywords

soil mineralization
36
temperature moisture
28
land-use types
16
soil
16
soil moisture
16
moisture
12
moisture land-use
12
temperature
10
mineralization
9
types soil
8

Similar Publications