Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biofilm formation is a common mechanism for surviving environmental stress and can be triggered by both intraspecies and interspecies interactions. Prolonged predator-prey interactions between the soil bacterium Myxococcus xanthus and Bacillus subtilis were found to induce the formation of a new type of B. subtilis biofilm, termed megastructures. Megastructures are tree-like brachiations that are as large as 500 μm in diameter, are raised above the surface between 150 and 200 μm, and are filled with viable endospores embedded within a dense matrix. Megastructure formation did not depend on TasA, EpsE, SinI, RemA, or surfactin production and thus is genetically distinguishable from colony biofilm formation on MSgg medium. As B. subtilis endospores are not susceptible to predation by M. xanthus, megastructures appear to provide an alternative mechanism for survival. In addition, M. xanthus fruiting bodies were found immediately adjacent to the megastructures in nearly all instances, suggesting that M. xanthus is unable to acquire sufficient nutrients from cells housed within the megastructures. Lastly, a B. subtilis mutant lacking the ability to defend itself via bacillaene production formed megastructures more rapidly than the parent. Together, the results indicate that production of the megastructure facilitates B. subtilis escape into dormancy via sporulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4272737PMC
http://dx.doi.org/10.1128/AEM.02448-14DOI Listing

Publication Analysis

Top Keywords

myxococcus xanthus
8
bacillus subtilis
8
biofilm formation
8
megastructures
7
subtilis
6
xanthus
5
predation myxococcus
4
xanthus induces
4
induces bacillus
4
subtilis form
4

Similar Publications

DZ2, a model myxobacterium, has three reported genome assemblies, including two recent complete assemblies (MxDZ2_Tam and MxDZ2_Nan) from the same culture stock. These assemblies misreported their circular nature and differed by 6.4 kb, raising questions about their accuracy.

View Article and Find Full Text PDF

Due to the prevalence and importance of dormant microbial forms in regulating microbial ecosystems, the generation of dormant structures, like spores, has been extensively studied. However, several aspects of the exit of bacterial spores from dormancy, i.e.

View Article and Find Full Text PDF

Under starvation conditions, a spot of a few million Myxococcus xanthus cells on agar will migrate inward to form aggregates that mature into dome-shaped fruiting bodies. This migration is thought to occur within structures called 'streams,' which are considered crucial for initiating aggregation. The prevailing traffic jam model hypothesizes that intersections of streams cause cell crowding and 'jamming,' thereby initiating the process of aggregate formation.

View Article and Find Full Text PDF

Many bacteria form spores to endure unfavorable conditions. While generate endospores through cell division, sporulation in non-Firmicutes remains less understood. The Gram-negative bacterium undergoes sporulation through two distinct mechanisms: rapid sporulation triggered by chemical induction and slow sporulation driven by starvation, both occurring independently of cell division.

View Article and Find Full Text PDF

Bacteria generally form only simple multicellular structures lacking the stable cell-cell connections characteristic of eukaryotic tissues. However, when the antibiotic moenomycin modifies peptidoglycan cell wall synthesis, rod-shaped cells of the Gram-negative bacterium become spherical, fuse their outer membranes, and assemble into stable, honeycomb-like lattices resembling eukaryotic tissues. These findings raise the intriguing possibility that some tissue-like organization could have evolved from stress-induced responses in bacterial ancestors.

View Article and Find Full Text PDF