98%
921
2 minutes
20
Background: The involvement of frontostriatal circuits in frontotemporal dementia (FTD) suggests that deep gray matter structures (DGM) may be affected in this disease.
Objective: We investigated whether volumes of DGM structures differed between patients with behavioral variant FTD (bvFTD), Alzheimer's disease (AD), and subjective complaints (SC) and explored relationships between DGM structures, cognition, and neuropsychiatric functioning.
Methods: For this cross-sectional study, we included 24 patients with FTD and matched them based on age, gender, and education at a ratio of 1:3 to 72 AD patients and 72 patients with SC who served as controls. Volumes of hippocampus, amygdala, thalamus, caudate nucleus, putamen, globus pallidus, and nucleus accumbens were estimated by automated segmentation of 3D T1-weighted MRI. MANOVA with Bonferroni adjusted post-hoc tests was used to compare volumes between groups. Relationships between volumes, cognition, and neuropsychiatric functioning were examined using multivariate linear regression and Spearman correlations.
Results: Nucleus accumbens and caudate nucleus discriminated all groups, with most severe atrophy in FTD. Globus pallidus volumes were smallest in FTD and discriminated FTD from AD and SC. Hippocampus, amygdala, thalamus, and putamen were smaller in both dementia groups compared to SC. Associations between amygdala and memory were found to be different in AD and FTD. Globus pallidus and nucleus accumbens were related to attention and executive functioning in FTD.
Conclusion: Nucleus accumbens, caudate nucleus, and globus pallidus were more severely affected in FTD than in AD and SC. The associations between cognition and DGM structures varied between the diagnostic groups. The observed difference in volume of these DGM structures supports the idea that next to frontal cortical atrophy, DGM structures, as parts of the frontal circuits, are damaged in FTD rather than in AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/JAD-141230 | DOI Listing |
Int J Mol Sci
August 2025
Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus.
Plastic pollution is a growing global challenge, and traditional plastic waste management methods are proving inadequate in tackling the issue. Enzymatic biodegradation has emerged as a promising alternative or addition to plastic waste management due to its environmentally friendly profile. Polyethylene terephthalate (PET) is among the most widely used polymers in packaging, and recent research has identified several PET-degrading enzymes, such as TfCut2, PETase, and LCC, as promising candidates for biodegradation applications at the industrial level.
View Article and Find Full Text PDFJpn J Radiol
August 2025
Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
Purpose: To differentiate between Parkinson's Disease (PD) and healthy controls by using integrated analysis of PD-specific MR findings including deformation of the substantia nigra pars compacta (SNpc), signal loss in neuromelanin (NM) sensitive MRI, and iron deposition in the deep gray matter (DGM) structures.
Materials And Methods: Patients with PD and healthy controls were recruited between August 2022 and December 2023. All subjects underwent 3 T MRI including a magnetization transfer contrast (MTC) and a double flip angle multi-echo protocol as part of Strategically Acquired Gradient Echo (STAGE).
Nucleic Acids Res
August 2025
Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Trojdena 4, Warsaw 02-109, Poland.
R-loops are nucleic acid structures composed of an RNA/DNA hybrid and a displaced single-stranded DNA that form during transcription. Their defective processing has been implicated in genome instability, which is associated with severe human diseases. Despite their biological significance, the mechanisms regulating R-loops remain incompletely understood, underscoring the need for improved tools to accurately map R-loops across the genome.
View Article and Find Full Text PDFAcad Radiol
August 2025
Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China (S.X., Z.Z., H.L., X.X., Y.D., G.C., M.G., R.L., Y.L.); Tiantan Image Research Center, China National Clinical Research Center for Neurological Diseases, Beijing, PR China (Y.Y., D.T., Y.L.); No. 119, th
Rationale And Objectives: To investigate deep gray matter (DGM) susceptibility in neuromyelitis optica spectrum disorders (NMOSD) and myelin-oligodendrocyte glycoprotein antibody-associated disease (MOGAD) using quantitative susceptibility mapping (QSM) with multiple sclerosis (MS) as a disease comparison, and explore its clinical significance.
Materials And Methods: We prospectively recruited 200 participants with QSM images: 81 NMOSD (62 aquaporin-4 [AQP4] antibody seropositive [AQP4+] and 19 AQP4 antibody seronegative [AQP4-]), 20 MOGAD, 71 relapsing-remitting MS, and 28 healthy controls (HC). We used voxel-wise analysis to compare differences in DGM susceptibility across groups, and linear regression analysis to relate susceptibility with structural MRI measures and clinical variables.
IEEE Trans Neural Netw Learn Syst
August 2025
In this article, we present the dynamic graph mixer (DGM), a novel model for learning spatiotemporal-individual coupled features from high-dimensional and incomplete (HDI) tensors, which frequently represent dynamic interactions among real-world data samples. In contrast to existing methods, the proposed DGM possesses the following three advantages when learning representations from HDI tensors. First, it performs light graph message passing based on the conjoint attentions learned by jointly modeling latent features and implicit structures to extract the high-order connectivity.
View Article and Find Full Text PDF