Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Iron overload causes progressive and sometimes irreversible damage due to accelerated production of reactive oxygen species. Desferrioxamine (DFO), a siderophore, has been used clinically to remove excess iron. However, the applications of DFO are limited because of its inability to access intracellular labile iron. Cell penetrating peptides (CPPs) have become an efficient delivery vector for the enhanced internalization of drugs into the cytosol. We describe, herein, an efficient method for covalently conjugating DFO to the CPPs TAT(47-57) and Penetratin. Both conjugates suppressed the redox activity of labile plasma iron in buffered solutions and in iron-overloaded sera. Enhanced access to intracellular labile iron compared to the parent siderophore was achieved in HeLa and RBE4 (a model of blood-brain-barrier) cell lines. Iron complexes of both conjugates also had better permeability in both cell models. DFO antioxidant and iron binding properties were preserved and its bioavailability was increased upon CPP conjugation, which opens new therapeutic possibilities for neurodegenerative processes associated with brain iron overload.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bc5004197 | DOI Listing |