Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Degradation of nucleic acids in biological environments is the major drawback of the therapeutic use of aptamers. Among the approaches used to circumvent this negative aspect, the introduction of 3'-3' inversion of polarity sites at the sequence 3'-end has successfully been proposed. However, the introduction of inversion of polarity at the ends of the sequence has never been exploited for G-quadruplex forming aptamers. In this communication we describe CD, UV, electrophoretic and biochemical investigations concerning thrombin binding aptamer analogues containing one or two inversions of polarity sites at the oligonucleotide ends. Data indicate that, in some cases, this straightforward chemical modification is able to improve, at the same time, the thermal stability, affinity to thrombin and nuclease resistance in biological environments, thus suggesting its general application as a post-SELEX modification also for other therapeutically promising aptamers adopting G-quadruplex structures.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c4ob01475h | DOI Listing |