Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Wheat storage protein genes, especially low molecular weight glutenin subunit (LMW-GS) and gliadin genes are difficult to be expressed in Escherichiacoli, mainly due to the presence of highly repetitive sequences. In order to establish a high efficiency expression system for these genes, five different expression plasmids combining with 9 genes, viz. 6 LMW-GS and 3 α-gliadin genes isolated from common wheat and related species, were studied for heterologous expression in E. coli. In this study, when an expressed tag sequence encoding signal peptide, His-S or GST-tag was fused to the 5' end of LMW-GS or gliadin gene as the leading sequence, all recombination genes could be stably expressed at a high level. On the contrast, as expected, the inserted genes encoding mature protein failed without an expressed tag sequence. This result indicated that using expressed tag sequences as leading sequences could promote LMW-GS and gliadin genes to be well expressed in E. coli. Further transcriptional analysis by quantitative real-time PCR (qRT-PCR) showed transcription levels of recombination genes (e.g. GST-Glutenin, His-S-Glutenin and SP(∗)-His-Glutenin) were 4-fold to 33-fold higher than those of the LMW-GS genes, which suggested these expressed tag sequences might play an important role in stimulating transcription. The possible molecular mechanism under this phenomenon was discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2014.09.016DOI Listing

Publication Analysis

Top Keywords

expressed tag
20
tag sequence
12
lmw-gs gliadin
12
genes
11
lmw-gs α-gliadin
8
α-gliadin genes
8
expressed
8
gliadin genes
8
recombination genes
8
tag sequences
8

Similar Publications

Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.

View Article and Find Full Text PDF

Structural biology is fundamental to understanding the molecular basis of biological processes. While machine learning-based protein structure prediction has advanced considerably, experimentally determined structures remain indispensable for guiding structure-function analyses and for improving predictive modeling. However, experimental studies of protein complexes continue to pose challenges, particularly due to the necessity of high protein concentrations and purity for downstream analyses such as cryogenic electron microscopy.

View Article and Find Full Text PDF

EZH2 variants derived from cryptic splice sites govern distinct epigenetic patterns during embryonic development.

Nucleic Acids Res

September 2025

Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Shenzhen Hospital, Chinese Academy of Medical Sciences, Shenzhen 518057, China.

EZH2 catalyzes H3K27me3 and is essential for embryonic development. Although multiple EZH2 variants have been identified, the functional implications and physiological significance of its heterogeneity remain unclear. Here, we revealed that conserved cryptic splice sites generated two EZH2 variants with (EZH2A) or without (EZH2B) a 27-nt region, coding for a 9-aa segment.

View Article and Find Full Text PDF

Patients with Dravet syndrome (DS) present with severe, spontaneous seizures and ataxia. While most patients with DS have variants in the sodium channel Nav1.1 α subunit gene, SCN1A, variants in the sodium channel β1 subunit gene, SCN1B, are also linked to DS.

View Article and Find Full Text PDF

Bivalve mollusks represent a taxonomically and economically significant clade within Mollusca. However, the regulatory mechanisms governing their embryonic development remain poorly characterized. The dwarf surf clam ( ), characterized by a short generation time and high fecundity, has recently gained recognition as an ideal model system for bivalve embryological research.

View Article and Find Full Text PDF