Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The study aimed to assess the genotoxic potential of silica-coated iron oxide nanoparticle functionalized with dithiocarbamate groups (IONP, 100 nm) in vitro exposure alone or its interference with mercury (Hg) co-exposure in the blood of European eel (Anguilla anguilla L.) by evaluating 8-hydroxy-2'-deoxyguanosine (8-OHdG), lipid peroxidation (LPO), and erythrocytic nuclear abnormalities (ENA). Four groups were made: (i) 2 × 10(6) erythrocytes + Roswell Park Memorial Institute-1640 (RPMI-1640) (control), (ii) 2 × 10(6) erythrocytes + IONP (2.5 mg L(-1)), (iii) 2 × 10(6) erythrocytes + Hg (50 μg L(-1)), and (iv) 2 × 10(6) erythrocytes + IONP + Hg. Blood plasma was also processed following the previous exposure conditions. Samplings were performed at 0, 2, 4, 8, 16, 24, 48, and 72 h of exposure. The results revealed significant ENA increases at both early (2, 4, 8) and late (16, 24, 48, 72) hours of exposure to IONP alone. However, IONP exposure combined with Hg co-exposure revealed no ENA increase at 2 h, suggesting that IONP-Hg complex formation is efficient to eliminate the DNA damage induced by individual exposure to IONP or Hg at early hours. Hence, the initial occurrence of antagonism between IONP and Hg was perceptible; however, at late hours of exposure, IONP was unable to mitigate the mercury-accrued negative impacts. Plasma exposure to IONP alone displayed a significant increase in 8-OHdG levels at 2 and 48 h of exposure. However, IONP in combination with Hg co-exposure revealed an increase in 8-OHdG levels at all the exposure length (except 16 h), suggesting that both IONP and Hg independently oxidized DNA. In addition, an additive effect on 8-OHdG levels at both early and late hours, and on LPO only at late hours (except 24 h), suggested that DNA is more susceptible to peroxidative damage than lipid.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-014-3591-3DOI Listing

Publication Analysis

Top Keywords

exposure ionp
20
late hours
16
8-ohdg levels
12
exposure
10
ionp
9
silica-coated iron
8
iron oxide
8
induced individual
8
revealed ena
8
early late
8

Similar Publications

Iron oxide nanoparticles (IONPs) are being increasingly recognized as viable materials for environmental remediation due to their capacity to adsorb contaminants such as glyphosate (GLY) on their surfaces. Nevertheless, the ecotoxicological implications of IONPs associated with GLY necessitate thorough evaluation to ascertain the safety of such remediation strategies. In this context, the present investigation was conducted to examine hepatic biomarkers pertinent to the redox system, as well as ultrastructural hepatic alterations in Poecilia reticulata, following a 21-day exposure to environmentally relevant concentrations of IONPs, iron ions (Fe), and glyphosate in its pure form (GLY) as well as a commercial glyphosate-based herbicide (GBH).

View Article and Find Full Text PDF

Demyelination is a frequent yet crippling neurological disease associated with multiple sclerosis (MS). The cuprizone (CZ) model, which causes demyelination through oxidative stress and neuroinflammation, is a popular tool used by researchers to examine this process. The polyphenol resveratrol (RESV) has become a promising neuroprotective agent in seeking for efficient therapies.

View Article and Find Full Text PDF

Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Faculty of Physics and Applied Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland. Electronic address:

An important issue in the context of both potenial toxicity of iron oxide nanoparticles (IONP) and their medical applications is tracking of the internalization process of these nanomaterials into living cells, as well as their localization and fate within them. The typical methods used for this purpose are transmission electron microscopy, confocal fluorescence microscopy as well as light-scattering techniques including dark-field microscopy and flow cytometry. All the techniques mentioned have their advantages and disadvantages.

View Article and Find Full Text PDF

Recent research has raised concern about the biocompatibility of iron oxide nanoparticles (IONPs), as they have been reported to induce oxidative stress and inflammatory responses, whilst prolonged exposure to high IONP concentrations may lead to cyto-/genotoxicity. Besides, there is concern about its environmental impact. The aim of our study was to investigate the effects of IONPs on the antioxidant defence system in freshwater fish Mozambique tilapia ( Peters 1852).

View Article and Find Full Text PDF

The fabrication of a hybrid fluorescent nanosensing system and its practical applications via film kits for the selective determination of mercury ions.

Spectrochim Acta A Mol Biomol Spectrosc

November 2024

Department of Chemistry, Faculty of Science, Gebze Technical University, Gebze 41400, Kocaeli, Turkiye; Department of Chemistry, Faculty of Science, Atatürk University, Erzurum 25100, Türkiye. Electronic address:

Heavy metal ions especially mercury exposure have severe toxic effects on living organisms and human health. Therefore, easy, accessible, and accurate determination strategies for the selective specification of mercury ions are essential for numerous disciplines. In the presented paper, new hybrid fluorescent iron oxide nanoparticles labeled with carbazole and triazole units (CT-IONP) were prepared via surface modification for the spectrofluorimetric determination of Hg in environmental samples.

View Article and Find Full Text PDF