A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

TOPOFOLD, the designed modular biomolecular folds: polypeptide-based molecular origami nanostructures following the footsteps of DNA. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Biopolymers, the essential components of life, are able to form many complex nanostructures, and proteins in particular are the material of choice for most cellular processes. Owing to numerous cooperative interactions, rational design of new protein folds remains extremely challenging. An alternative strategy is to design topofolds-nanostructures built from polypeptide arrays of interacting modules that define their topology. Over the course of the last several decades DNA has successfully been repurposed from its native role of information storage to a smart nanomaterial used for nanostructure self-assembly of almost any shape, which is largely because of its programmable nature. Unfortunately, polypeptides do not possess the straightforward complementarity as do nucleic acids. However, a modular approach can nevertheless be used to assemble polypeptide nanostructures, as was recently demonstrated on a single-chain polypeptide tetrahedron. This review focuses on the current state-of-the-art in the field of topological polypeptide folds. It starts with a brief overview of the field of structural DNA and RNA nanotechnology, from which it draws parallels and possible directions of development for the emerging field of polypeptide-based nanotechnology. The principles of topofold strategy and unique properties of such polypeptide nanostructures in comparison to native protein folds are discussed. Reasons for the apparent absence of such folds in nature are also examined. Physicochemical versatility of amino acid residues and cost-effective production makes polypeptides an attractive platform for designed functional bionanomaterials.

Download full-text PDF

Source
http://dx.doi.org/10.1002/wnan.1289DOI Listing

Publication Analysis

Top Keywords

protein folds
8
polypeptide nanostructures
8
folds
5
polypeptide
5
topofold designed
4
designed modular
4
modular biomolecular
4
biomolecular folds
4
folds polypeptide-based
4
polypeptide-based molecular
4

Similar Publications