98%
921
2 minutes
20
The new uranium(IV) chlorophosphate compounds UCl4(POCl3) and [U2Cl9][PCl4] have been synthesized by the solid-state reactions of U, P2O5, and PCl5 at 648 K; the compounds UCl3(PO2Cl2) and U2Cl8(POCl3) have been synthesized at 648 K with the same reactants plus added S. Their structures are, respectively, chainlike, a simple salt, three-dimensional, and sheetlike. From ab initio calculations, U2Cl8(POCl3) and UCl3(PO2Cl2) are found to be ferromagnetic, whereas UCl4(POCl3) is found to be antiferromagnetic. U2Cl8(POCl3) is a strong metal, whereas UCl3(PO2Cl2) is a weaker metal. In contrast, UCl4(POCl3) has a finite band gap, with a value of 0.35 eV.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ic501781h | DOI Listing |
Adv Sci (Weinh)
September 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, State Key Laboratory of Advanced Materials for Intelligent Sensing, Tianjin University, Tianjin, 300072, China.
Organic electrode materials have garnered great attention in recent years, owing to their resource sustainability, structural diversity, and superior compatibility with various ionic species. Among them, quinone-based compounds have attracted particular interest. Notably, compared with para-quinone analogs (e.
View Article and Find Full Text PDFHaematologica
September 2025
Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Division of Environmental Medicine, Department of Medicine, University of Louisville, Louisville, Kentucky,.
Maintaining a healthy pool of circulating red blood cells (RBCs) is essential for adequate perfusion, as even minor changes in the population can impair oxygen delivery, resulting in serious health complications including tissue ischemia and organ dysfunction. This responsibility largely falls to specialized macrophages in the spleen, known as red pulp macrophages, which efficiently take up and recycle damaged RBCs. However, questions remain regarding how these macrophages are acutely activated to accommodate increased demand.
View Article and Find Full Text PDFChembiochem
September 2025
Department of Chemistry and Biochemistry, University of Wisconsin-Eau Claire, 101 Roosevelt Avenue., Eau Claire, Wisconsin, 54701, USA.
The development of synthetically-useful biocatalysts requires characterizing the behavior of an enzyme under conditions amenable to preparative-scale reactions. Whole cells harboring the catalyst of interest are often used in such reactions, as protein purification is laborious and expensive. However, monitoring reaction rates when using whole cells is challenging, as cellular debris precludes the use of a continuous assay.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
National Engineering Laboratory for Resource Development of Endangered Crude Drugs in Northwest China, Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry of the Ministry of Education, College of Life Sciences, Shaanxi Normal University, Xi'an, China.
Drought stress dynamically reprograms specialised metabolism in medicinal plants. However, the transcriptional regulatory modules governing stress-adaptive metabolite synthesis remain poorly characterised. Here, we identified SbMYB8 as a drought-responsive transcription factor showing nuclear localisation and dose-dependent induction under drought in Scutellaria baicalensis.
View Article and Find Full Text PDFLiver Int
October 2025
Division of Gastroenterology, Acireale Hospital, Azienda Sanitaria Provinciale di Catania, Catania, Italy.
Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.
Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.