98%
921
2 minutes
20
Soil salinity can inhibit the processes of nitrogen cycle, and the active nitrogen is the important indicator to reflect the turnover of nitrogen. A laboratory experiment was conducted to study the effect of soil salinity on the active nitrogen in a soil of the Yellow River Delta incubated aerobically under 25 degrees C for 45 days. Four levels of salinity (S1: 0.1%, S2: 0.5%, S3: 0.9%, S4: 1.3%) were imposed using NaCl (mass fraction), and glucose with or without NH4Cl were added to the soils. NO3(-) -N, NH4(+) -N, total soluble nitrogen (TSN) and microbial biomass nitrogen (MBN) were monitored. Results showed that NO3(-)-N was significantly higher in the low salinity soil (S1, S2) than in the high salinity soil (S3, S4) under the control and with NH4Cl addition, and especially the difference was larger with NH4Cl addition. Comparing with the control, NO3(-) -N was increased significantly in S1 and S2. NO3(-) -N was decreased significantly with glucose addition, and there was no difference among the four salinity soils during the whole incubation period. NH4(+) -N was significantly higher in the high salinity soil (S3, S4) than in the low salinity soil (S1, S2), and it was increased particularly in S4 after day 5. With the addition of NH4Cl, NH4(+) -N was increased in S3 and S4. MBN was higher in the low salinity soil than in the high salinity soil, and it was not increased with NH4Cl addition, though TSN was increased. With glucose addition, MBN was increased by 89.9% - 130.9% in the low salinity soil (S1, S2) and 36.9% - 79.5% in the high salinity soil (S3, S4). It was suggested that soil salinity had influence on N transformation, and high salinity inhibited the transformation and assimilation of N by microorganism. The addition of C depressed the effect of salinity, and improved the microbial activity. The application of organic matter is an effective measure to improve N transformation in saline soils.
Download full-text PDF |
Source |
---|
Biol Trace Elem Res
September 2025
Soil Science Department, Faculty of Agriculture, Shahed University, Tehran, 15614, Iran.
The effect of mixed potable and wastewater (WW) irrigation on leafy vegetables cultivated in southern Tehran, Iran, was investigated in 2022. Eight species-spinach (Spinacia oleracea), scallion (Allium fistulosum), radish (Raphanus sativus), cress (Lepidium sativum), basil (Ocimum basilicum), purslane (Portulaca oleracea), cilantro (Coriandrum sativum), and savory (Satureja hortensis)-were grown in calcareous loamy soil under greenhouse conditions using five irrigation regimes (0%, 25%, 50%, 75%, and 100% WW) applied every 2 days. Soil salinity, DTPA-extractable Co, Cu, Ni, and Zn, plant growth traits, and health risk indices-transfer factor (TF), bioaccumulation factor (BAF), average daily dietary intake (ADD), hazard quotient (HQ), and cancer risk (CR)-were determined for children and adults.
View Article and Find Full Text PDFEnviron Monit Assess
September 2025
Institute of Environmental Studies, Kurukshetra University, Kurukshetra, Haryana, 136119, India.
India produces an estimated 6.38 million tons of surplus sugarcane trash annually. When burned in fields, this trash emits approximately 12,948 kg CO equivalent greenhouse gases per hectare and causes nutrient losses (41 kg ha nitrogen, 5.
View Article and Find Full Text PDFPhysiol Plant
September 2025
Centre of Molecular and Environmental Biology (CBMA), Department of Biology, School of Sciences of the University of Minho, Braga, Portugal.
The Mediterranean Basin, a hotspot for tomato production, is one of the most vulnerable areas to climate change, where rising temperatures and increasing soil and water salinization represent major threats to agricultural sustainability. Thus, to understand the molecular mechanisms behind plant responses to this stress combination, an RNA-Seq analysis was conducted on roots and shoots of tomato plants exposed to salt (100 mM NaCl) and/or heat (42°C, 4 h each day) stress for 21 days. The analysis identified over 8000 differentially expressed genes (DEGs) under combined stress conditions, with 1716 DEGs in roots and 2665 in shoots being exclusively modulated in response to this specific stress condition.
View Article and Find Full Text PDFEnviron Microbiol Rep
October 2025
École d'urbanisme et d'architecture de paysage, Faculté de l'aménagement, Université de Montréal, Montréal, Québec, Canada.
Bioretention (BR) systems are green infrastructures used to manage runoff even in cold climates. Bacteria and fungi play a role in BR's performance. This mesocosm study investigated the influence of plant species and de-icing salt on the diversity, the community composition, and the differential abundance of bacteria and fungi in BR.
View Article and Find Full Text PDFJ Environ Manage
September 2025
National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and the Environment, Shandong Agricultural University, Tai'an, 271018, China.
Excessive use of conventional potassium chloride (KCl) fertilizer has led to soil degradation problems such as compaction and salinization. While controlled-release potassium chloride (CRK) fertilizer has the potential to enhance crop productivity and mitigate these problems, its impact on soil quality (SQ) remains unclear. In this study, four potassium (K) fertilization treatments were established: no K application (CK), conventional KCl fertilizer (CRK0), 50 % substitution with CRK (CRK0.
View Article and Find Full Text PDF