Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Objective: Hydrostatic force applied to tooth pulp has long been suspected to be the direct cause of dental pain. However, the molecular and cellular identity of the transducer of the mechanical force in teeth is not clear. Growing number of literatures suggested that odontoblasts, secondary to its primary role as formation of tooth structure, might function as a cellular mechanical transducer in teeth.
Design: In order to determine whether odontoblasts could play a crucial role in transduction of hydrostatic force applied to dental pulp into electrical impulses, current study investigated the expression of stretch-activated transient receptor potential (TRP) channels in acutely isolated odontoblasts from adult rats by single cell reverse transcriptase polymerase chain reaction and immunocytochemical analysis.
Results: As the result, expression of TRPM7 (melastatin 7) was observed in majority (87%) of odontoblasts while mRNAs for TRPC1 (canonical 1), TRPC6 (canonical 6) and TRPV4 (vanilloid 4) were detected in small subpopulations of odontoblasts. TRPM3 (melastatin 3) was not detected in our experimental set-up. Immunocytochemical analysis further revealed TRPM7 expression at protein level.
Conclusion: Expression of the mechanosensitive TRP channels provides additional evidence that supports the sensory roles of odontoblasts. Given that TRPM7 is a mechanosensitive ion channel with a kinase activity that plays a role in Mg(2+) homeostasis, it is possible that TRPM7 expressed in odontoblasts might play a central role in mineralization during dentin formation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.archoralbio.2014.07.016 | DOI Listing |