The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains.

Virology

University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4; Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0. Electronic address:

Published: November 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles. Confocal analysis of CLSV infected 16C plants shows that the ER becomes modified including the formation of punctae at connections between ER tubules and in association with the nucleus. Ultrastructural analysis shows that the cytoplasm contains numerous vesicles which are also found between the perinuclear ER and nuclear membrane. It is proposed that these vesicles correspond to modified ER used as sites for CLSV replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7112066PMC
http://dx.doi.org/10.1016/j.virol.2014.07.020DOI Listing

Publication Analysis

Top Keywords

auxiliary replicase
16
cucumber leaf
8
leaf spot
8
spot virus
8
endoplasmic reticulum
8
transmembrane domains
8
virus p25
4
auxiliary
4
p25 auxiliary
4
replicase
4

Similar Publications

Cryo-EM structure and functional landscape of an RNA polymerase ribozyme.

Proc Natl Acad Sci U S A

January 2024

Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Aarhus 8000, Denmark.

The emergence of an RNA replicase capable of self-replication is considered an important stage in the origin of life. RNA polymerase ribozymes (PR) - including a variant that uses trinucleotide triphosphates (triplets) as substrates - have been created by in vitro evolution and are the closest functional analogues of the replicase, but the structural basis for their function is poorly understood. Here we use single-particle cryogenic electron microscopy (cryo-EM) and high-throughput mutation analysis to obtain the structure of a triplet polymerase ribozyme (TPR) apoenzyme and map its functional landscape.

View Article and Find Full Text PDF

Plant defense against melon necrotic spot virus (MNSV) is triggered by the viral auxiliary replicase p29 that is targeted to mitochondrial membranes causing morphological alterations, oxidative burst and necrosis. Here we show that MNSV coat protein (CP) was also targeted to mitochondria and mitochondrial-derived replication complexes [viral replication factories or complex (VRC)], in close association with p29, in addition to chloroplasts. CP import resulted in the cleavage of the R/arm domain previously implicated in genome binding during encapsidation and RNA silencing suppression (RSS).

View Article and Find Full Text PDF

Eukaryotic positive-strand RNA [(+)RNA] viruses are intracellular obligate parasites replicate using the membrane-bound replicase complexes that contain multiple viral and host components. To replicate, (+)RNA viruses exploit host resources and modify host metabolism and membrane organization. Phospholipase D (PLD) is a phosphatidylcholine- and phosphatidylethanolamine-hydrolyzing enzyme that catalyzes the production of phosphatidic acid (PA), a lipid second messenger that modulates diverse intracellular signaling in various organisms.

View Article and Find Full Text PDF

The Cucumber leaf spot virus p25 auxiliary replicase protein binds and modifies the endoplasmic reticulum via N-terminal transmembrane domains.

Virology

November 2014

University of British Columbia, Faculty of Land and Food Systems, Vancouver, British Columbia, Canada V6T 1Z4; Agriculture and Agri-Food Canada Pacific Agri-Food Research Centre, 4200 Hwy 97, Summerland, British Columbia, Canada V0H 1Z0. Electronic address:

Cucumber leaf spot virus (CLSV) is a member of the Aureusvirus genus, family Tombusviridae. The auxiliary replicase of Tombusvirids has been found to localize to endoplasmic reticulum (ER), peroxisomes or mitochondria; however, localization of the auxiliary replicase of aureusviruses has not been determined. We have found that the auxiliary replicase of CLSV (p25) fused to GFP colocalizes with ER and that three predicted transmembrane domains (TMDs) at the N-terminus of p25 are sufficient for targeting, although the second and third TMDs play the most prominent roles.

View Article and Find Full Text PDF

Tombusviruses replicate on pre-existing organelles such as peroxisomes or mitochondria, the membranes of which become extensively reorganized into multivesicular bodies (MVBs) during the infection process. Cucumber necrosis virus (CNV) has previously been shown to replicate in association with peroxisomes in yeast. We show that CNV induces MVBs from peroxisomes in infected plants and that GFP-tagged p33 auxiliary replicase protein colocalizes with YFP(SKL), a peroxisomal marker.

View Article and Find Full Text PDF