A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Protease-mediated human smooth muscle cell proliferation by urokinase requires epidermal growth factor receptor transactivation by triple membrane signaling. | LitMetric

Protease-mediated human smooth muscle cell proliferation by urokinase requires epidermal growth factor receptor transactivation by triple membrane signaling.

J Surg Res

Vascular Biology and Therapeutics Program, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas; Department of Cardiovascular Surgery, Houston Methodist DeBakey Heart & Vascular Center, Houston Methodist Hospital, Houston, Texas. Electronic address:

Published: December 2014


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Urokinase (uPA) modulates cellular and extracellular matrix responses within the microenvironment of the vessel wall and has been shown to activate the epidermal growth factor receptor (EGFR). This study examines the role of the protease domain of uPA during EGFR activation in human vascular smooth muscle cells (VSMC).

Methods: Human coronary VSMC were cultured in vitro. Assays of cell proliferation and EGFR phosphorylation were examined in response to the carboxyterminal fragment of uPA (CTF) in the presence and absence of the plasmin, metalloprotease and a disintegrin and metalloproteinase (ADAM) inhibitors, heparin-bound epidermal growth factor (HB-EGF), and EGFR inhibitors, and small interfering RNA to EGFR and ADAMs.

Results: CTF produced a dose-dependent increase in DNA synthesis and cell proliferation in human VSMC, which was blocked in a dose-dependent manner by both plasmin inhibitors and the EGFR inhibitor, AG1478. CTF induced time-dependent EGFR phosphorylation, which was blocked by inhibitors of plasmin and metalloproteinases activity. The presence of urokinase plasminogen activator receptor was not required. Inhibition of ADAM-10 and -12, and of HB-EGF blocked EGFR activation in response to CTF. CTF-mediated activation of EGFR was mediated through Gβγ, src, and NAD(P)H oxidase.

Conclusions: In human coronary VSMC, uPA induces uPAR-independent, domain-dependent smooth muscle cell proliferation through transactivation of EGFR by a plasmin-mediated, ADAM-induced, and HB-EGF-dependent process, which is mediated by the intracellular pathways involving Gαi, Gβγ, src, and NAD(P)H oxidase.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4252843PMC
http://dx.doi.org/10.1016/j.jss.2014.06.054DOI Listing

Publication Analysis

Top Keywords

cell proliferation
16
smooth muscle
12
epidermal growth
12
growth factor
12
egfr
10
muscle cell
8
factor receptor
8
egfr activation
8
human coronary
8
coronary vsmc
8

Similar Publications